We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC3D was used to investigate the maximum ten...We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC3D was used to investigate the maximum tensile stress and displacement of a roadway in a known stress field for angles,α,between the roadway axial direction and the maximum principal stress of 0°,30°,45°,60° and 90°.This theory was applied to the analysis of an engineering case.The results indicate that stress and displacement of the surrounding rock increase as the angle,α,increases.This provides some significant guidance for a reasonable layout of roadways in a known stress field.展开更多
Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make u...Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.展开更多
The stress-strain curve of an α-β Ti-8Mn alloy was measured and then it was calculated with finite element method (FEM) based on the stress-strain curves of the single α and β phase alloys. By comparing the calc...The stress-strain curve of an α-β Ti-8Mn alloy was measured and then it was calculated with finite element method (FEM) based on the stress-strain curves of the single α and β phase alloys. By comparing the calculated stress-strain curve with the measured one, it can be seen that they fit each other very well. Thus, the FE model built in this work is effective. According to the above mentioned model, the distributions of stress and strain in the α and β phases were simulated. The results show that the stress gradients exist in both α and β phases, and the distributions of stress are inhomogeneous. The stress inside the phase is generally higher than that near the interface. Meanwhile, the stress in the α phase is lower than that in the β phase, whereas the strain in the α phase is higher than that in the β phase.展开更多
This paper analyzed the characteristics of welding solidification crack of stainless steels,and clearly re- vealed the the of the deformation in the molten - the pool and the solidification shrinkage on the stress -...This paper analyzed the characteristics of welding solidification crack of stainless steels,and clearly re- vealed the the of the deformation in the molten - the pool and the solidification shrinkage on the stress - strain fields in the trail of molten - weld pool.Moreover, rheologic properties of the alloys in solid - liquid zone were also obtained by measuring the hading and unloading deform curves of the steels.As a result, a numerical model for simulation of stress - strain distributions of welding solidifi- cation crack was developed. On the basis of the model,the thesis simulated the driving force of solidifi- cation crack of stainless steels, that is, stress - strain fields in the trail of molten-weld pool with fi- nite element method.展开更多
For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) fi...For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model.The results show that for forming processes of different rings,as γ^-(the equivalent distribution ratio of feed amount per revolution of a process) decreases,the final peak Mises stress may transfer from the biting point at the driver roll side to that at the idle roll side,and the final peak equivalent plastic strain may transfer from the outside surface to the inside surface;as L^- (the equivalent deformation zone length of a process) increases,the final peak Mises stress may appear in the middle layer.The final positions of peak Mises stress and equivalent plastic strain are the combined effects of the above two aspects.In the deformation zone of a deformed ring,the surface layers are in the 3D compressive stress state,while the middle layer is in the 1D compressive and 2D tensile stress state or 2D compressive and 1D tensile stress state;the whole ring is in the 1D compressive and 2D tensile strain state.展开更多
Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasona...Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasonable mechanics model, research on the first pass of spinning process is carried out with FEM system developed. The distributions of the stress and strain are obtained by three types of roller-trace curves: straight line, involute curves and quadratic curves. The results are as follows: (1) The values of equivalent stress and strain are the lowest under involute curve compared to other two curves, and they change relatively small and decrease with the increase of radius. The values of equivalent stress and strain is the highest under quadratic curves, and increase with the increase of radius. (2) The value of radial stress is smallest under involute curve, and is the largest under straight line. Value of radial stress is often used as the criterion of cracking limit, so its distribution laws can provide references for studying the condition of cracking in multi-pass conventional spinning under different roller-trace. (3) Tangential stress is compressive stress. Absolute value of tangential stress is the smallest under involute curve, and values of tangential stress are close between other two curves. The distribution laws of tangential stress can serve as a significant guide to research the critical condition of wrinkling in multi-pass conventional spinning under different roller-trace. (4) The reduction of thickness is the smallest under involute curve. The distribution of the thickness strain is very unequal under quadratic curves. The results obtained can provide references for selecting reasonable roller-trace in multi-pass conventional spinning.展开更多
In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies....In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results.展开更多
Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at v...Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at varying orientations were applied. The results indicate that stress concentrations, roadway deformation and failure increase in magnitude and extent as the excavation angle with respect to the maximum horizontal stress increases. In addition, the stress adjacent to the coal-rock interface sharply varies in space and evolves with time; coal is much more vulnerable to deformation and failure than rock.The results provide insights into the layout of roadways excavated through a coal seam. Roadways should be designed parallel or at a narrow angle to the maximum horizontal stress. The concentrated stress at the top corner of the face-end should be reduced in advance, and the coal seam should be reinforced immediately after excavation.展开更多
Environmental contamination has been caused by petroleum-based polymeric materials in the melt deposition process.Nowadays biodegradable materials have been widely used in the fused deposition modeling(FDM)industry,su...Environmental contamination has been caused by petroleum-based polymeric materials in the melt deposition process.Nowadays biodegradable materials have been widely used in the fused deposition modeling(FDM)industry,such as polylactic acid(PLA).However,internal complex thermal stress and deformations in part caused by an uneven distribution of PLA filament deposition temperatures during FDM,which will seriously affect the geometric accuracy of the printed part.In order to reduce material waste and environmental pollution during the printing process,the accuracy of PLA part can be improved.Herein,numerical simulation was carried out to investigate the temperature field and stress field during the building and cooling process of cuboid specimens.The effects of printing path on the thermal stress and temperature field during the building process were mainly studied.The results show that the printing path has a significant effect on the stress distribution.The most uni-form stress distribution and the smallest deformation were obtained using the Zig Zag printing path.Finally,the residual stress during the cooling process was collected using strain gauges embedded at the mid-plane of the FDM built cuboid specimens.The simulation results are consistent with the experimental results.展开更多
The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not h...The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not hot cracking will occur. With rigid restraint hot cracking (crater cracking) will occur at the arc-stopping end, and such cracking usually will not occur without external restraint. But under restraint-free condition it is easy for terminal cracks to occur.展开更多
An analytical model for dynamic recrystallization (DRX) is studied based on the relative grain size model proposed by Sakai and Jonas, and the characteristic flow behaviors under DRX are analyzed and simulated. Int...An analytical model for dynamic recrystallization (DRX) is studied based on the relative grain size model proposed by Sakai and Jonas, and the characteristic flow behaviors under DRX are analyzed and simulated. Introducing the variation of dynamic grain size and the heterogeneous distribution of disolo- cation densities densities under DRX,a simple method for modeling and simulating DRX processes is developed by using Laplace transformation theory. The results derived from the present model agree well with the experimental results in literatures. This simulation can reproduce a number of features in DRX flow behaviors, for example,single and multiple peak flow behaviors followed by a steady state flow, the transition between them, and so on.展开更多
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a...In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.展开更多
Laboratory tests revealed that the behavior of brick masonry under compressive cyclic loading is characterized by three distinct stress-strain curves. These three curves are termed as envelope curve, common point curv...Laboratory tests revealed that the behavior of brick masonry under compressive cyclic loading is characterized by three distinct stress-strain curves. These three curves are termed as envelope curve, common point curve and stability point curve. The envelope curve is obtained by superimposing the cyclic peaks on the monotonic stress-strain curve. The common point curve is the locus of intersection points of loading and unloading curves of the cycles. If for the same cycle, the loading and unloading are repeated several times, the intersection points of loading and unloading paths will stabilize at a lower bound. The locus of these stabilized points (lower bound points) of all cycles form the stability point curve. Therefore, the stability point curve can be used as a measure for the allowable stress for masonry under cyclic loadings. The proposed cyclic allowable stress level is associated with the accumulation of residual (plastic) strain levels as a result of cyclic loading history. The permissible stress level was found to be about two thirds of the cyclic peak stress of the specimen.展开更多
In this study,we numerically investigate the influence of hysteretic stress path behavior on the seal integrity during underground gas storage operations in a depleted reservoir.Our study area is the Honor Rancho Unde...In this study,we numerically investigate the influence of hysteretic stress path behavior on the seal integrity during underground gas storage operations in a depleted reservoir.Our study area is the Honor Rancho Underground Storage Facility in Los Angeles County(California,USA),which was converted into an underground gas storage facility in 1975 after 20 years of oil and gas production.In our simulations,the geomechanical behavior of the sand reservoir is modeled using two models:(1)a linear elastic model(non-hysteretic stress path)that does not take into consideration irreversible deformation,and(2)a plastic cap mechanical model which considers changes in rock elastic properties due to irreversible deformations caused by plastic reservoir compaction(hysteretic stress path).It shows that the irreversible compaction of the geological layer over geologic time and during the reservoir depletion can have important consequences on stress tensor orientation and magnitude.Ignoring depletion-induced irreversible compaction can lead to an over-estimation of the calculation of the maximum working reservoir pressure.Moreover,this irreversible compaction may bring the nearby faults closer to reactivation.However,regardless of the two models applied,the geomechanical analysis shows that for the estimated stress conditions applied in this study,the Honor Rancho Underground Storage Facility is being safely operated at pressures much below what would be required to compromise the seal integrity.展开更多
The wellbore stability of a vertical well through the sandstone reservoir layers of the Asmari oil-bearing formation in south-west Iran is investigated.The safe drilling-fluid density range for maintaining wellbore st...The wellbore stability of a vertical well through the sandstone reservoir layers of the Asmari oil-bearing formation in south-west Iran is investigated.The safe drilling-fluid density range for maintaining wellbore stability is determined and simulated using FLAC3 D software and a finite volume model established with drilled strata geomechanical features.The initiation of plastic condition is used to determine the safe mud weight window(SMWW)in specific sandstone layers.The effects of rock strength parameters,major stresses around the wellbore and pore pressure on the SMWW are investigated for this wellbore.Sensitivity analysis reveals that a reduction in cohesion and internal friction angle values leads to a significant narrowing of the SMWW.On the other hand,the reduction of pore pressure and the ratio between maximum and minimum horizontal stresses causes the SMWW to widen significantly.The ability to readily quantify changes in SMWW indicates that the developed model is suitable as a well planning and monitoring tool.展开更多
Regardless of beneficial associated with internal waste dump (IWD) method, practices of this method within boundaries of pit-slope have some serious problems on stability issues due to this area is zone of potential f...Regardless of beneficial associated with internal waste dump (IWD) method, practices of this method within boundaries of pit-slope have some serious problems on stability issues due to this area is zone of potential failure. This zone is known as dynamic reactive zone which is easy to deform by external force, and inherent dangers of failure posing a threat to slope. Therefore, it is paramount to study the induced shear stress behavior in this zone particularly when IWD method is adopted within this zone. In this paper, a numerical study for investigating IWD-induced shear stress behavior has been carried out using Finite Element Method (FEM) with Strength Reduction approach. Different scenarios as per pit-slope depths, IWD heights and buffer zone lengths have been accounted and simulated using PHASE 2 to understand changes in induced shear stress imposed on the pit-slope. It is found that shear stress imposed on pit slope seems change dramatically with increasing IWD height for case of buffer zone length is less than 100-m-long.展开更多
Rock masses in alpine canyon areas exhibit strong heterogeneity,discontinuity,and are subject to strong tectonic effects and stress unloading,leading to extremely complex distribution of in-situ stress.In addition,the...Rock masses in alpine canyon areas exhibit strong heterogeneity,discontinuity,and are subject to strong tectonic effects and stress unloading,leading to extremely complex distribution of in-situ stress.In addition,the occurrence of layered rock masses makes it more complex,with obvious anisotropic mechanical properties.This study proposes a comprehensive method for evaluating the stability of layered rock spillway tunnels in a hydropower station in an alpine canyon.First,the failure criterion and mechanical model of layered rock masses considering the anisotropy induced by the bedding plane and the true triaxial stress regime were established;an inversion theory and calculation procedure for in-situ stress in alpine canyon areas were then introduced.Finally,by using a self-developed numerical tool,i.e.CASRock,the stability of the layered rock spillway tunnel in a hydropower station was numerically analyzed.The results show that,affected by geological structure and stratigraphic lithology,there is significant differentiation in the in-situ stress in alpine canyons,with horizontal tectonic stress as the main factor.The occurrence of layered rock masses in the region has a significant impact on the stability of surrounding rock,and the angle between the bedding strike and the tunnel axis as well as the bedding dip both exert a significant influence on the failure characteristics of the surrounding rock.展开更多
This paper has simulated the driving force of solidification crack of stainless steels, that is, stress/strain field in the trail of molten pool. Firstly, the effect of the deformation in the molten pool was eliminate...This paper has simulated the driving force of solidification crack of stainless steels, that is, stress/strain field in the trail of molten pool. Firstly, the effect of the deformation in the molten pool was eliminated after the element rebirth method was adopted. Secondly, the influence of solidification shrinkage was taken into account by increasing thermal expansion coefficients of the steels at elevated temperatures. Finally, the stress/strain distributions of different conditions have been computed and analyzed. Furthermore, the driving force curves of the solidification crack of the steels have been obtained by converting strain time curves into strain temperature curves, which founds a basis for predicting welding solidification crack.展开更多
A metal additive manufacturing process results in a nearly net-shaped fabrication of parts directly from digital data.A local heat source melts the deposited material,and a part is built layer-by-layer.Residual stress...A metal additive manufacturing process results in a nearly net-shaped fabrication of parts directly from digital data.A local heat source melts the deposited material,and a part is built layer-by-layer.Residual stress and de-formation are critical issues experienced by additively manufactured parts.Modeling the additive manufacturing process provides important insights and can help determine an optimal build plan so as to minimize residual stress formation.Various approaches have been used for modeling of residual stresses,ranging from high-fidelity models to simplified models,for quicker results.This paper provides a state-of-the-art review of the approaches used to numerically model residual deformation and stresses in structures built using additive manufacturing.Fur-thermore,it describes the physical causes of residual-stress generation in an additively manufactured structure.展开更多
During the welding, many phenomena occur. The materials deform under the action of residual stresses. This tendency is due to the high gradients of temperature during the process. These deformations are really difficu...During the welding, many phenomena occur. The materials deform under the action of residual stresses. This tendency is due to the high gradients of temperature during the process. These deformations are really difficult for many professionals operating in the area. In the goal to predict these variations, one has established the behaviour laws which will be applied to evaluate residual stresses and strains. This research is focused on the study of the Thermal Affected Zone (TAZ) during the welding of the 13Cr-4Ni martensitic stainless steel. The TAZ does not know any change of state (solid/liquid). It only knows the metallurgical phase change (austenite/martensite). There are three types of behaviour laws in this study: thermal, mechanical and metallurgical behaviour laws. The thermal behaviour law serves to evaluate the temperature field which induces the mechanical strains. The mechanical behaviour law serves to evaluate spherical stress (pressure) and deviatoric stress which compose the residual stress. It also helps to measure the total strain. The metallurgical behaviour law serves for the evaluation of the metallurgical phase proportions. To validate the modelling developed in this study, one has made the simulations to compare the results obtained with the analytical and experimental data.展开更多
基金supported by the National Basic Research Program of China (No.2010CB226805)the National Natural Science Foundation of China (Nos.50874103 and 50974115)+1 种基金the Natural Science Foundation of Jiangsu Province (No.KB2008135)the State Key Laboratory Fund (No.SKLGDUEK 0905)
文摘We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC3D was used to investigate the maximum tensile stress and displacement of a roadway in a known stress field for angles,α,between the roadway axial direction and the maximum principal stress of 0°,30°,45°,60° and 90°.This theory was applied to the analysis of an engineering case.The results indicate that stress and displacement of the surrounding rock increase as the angle,α,increases.This provides some significant guidance for a reasonable layout of roadways in a known stress field.
文摘Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.
文摘The stress-strain curve of an α-β Ti-8Mn alloy was measured and then it was calculated with finite element method (FEM) based on the stress-strain curves of the single α and β phase alloys. By comparing the calculated stress-strain curve with the measured one, it can be seen that they fit each other very well. Thus, the FE model built in this work is effective. According to the above mentioned model, the distributions of stress and strain in the α and β phases were simulated. The results show that the stress gradients exist in both α and β phases, and the distributions of stress are inhomogeneous. The stress inside the phase is generally higher than that near the interface. Meanwhile, the stress in the α phase is lower than that in the β phase, whereas the strain in the α phase is higher than that in the β phase.
文摘This paper analyzed the characteristics of welding solidification crack of stainless steels,and clearly re- vealed the the of the deformation in the molten - the pool and the solidification shrinkage on the stress - strain fields in the trail of molten - weld pool.Moreover, rheologic properties of the alloys in solid - liquid zone were also obtained by measuring the hading and unloading deform curves of the steels.As a result, a numerical model for simulation of stress - strain distributions of welding solidifi- cation crack was developed. On the basis of the model,the thesis simulated the driving force of solidifi- cation crack of stainless steels, that is, stress - strain fields in the trail of molten-weld pool with fi- nite element method.
基金Project(51005258) supported by the National Natural Science Foundation of China
文摘For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model.The results show that for forming processes of different rings,as γ^-(the equivalent distribution ratio of feed amount per revolution of a process) decreases,the final peak Mises stress may transfer from the biting point at the driver roll side to that at the idle roll side,and the final peak equivalent plastic strain may transfer from the outside surface to the inside surface;as L^- (the equivalent deformation zone length of a process) increases,the final peak Mises stress may appear in the middle layer.The final positions of peak Mises stress and equivalent plastic strain are the combined effects of the above two aspects.In the deformation zone of a deformed ring,the surface layers are in the 3D compressive stress state,while the middle layer is in the 1D compressive and 2D tensile stress state or 2D compressive and 1D tensile stress state;the whole ring is in the 1D compressive and 2D tensile strain state.
文摘Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasonable mechanics model, research on the first pass of spinning process is carried out with FEM system developed. The distributions of the stress and strain are obtained by three types of roller-trace curves: straight line, involute curves and quadratic curves. The results are as follows: (1) The values of equivalent stress and strain are the lowest under involute curve compared to other two curves, and they change relatively small and decrease with the increase of radius. The values of equivalent stress and strain is the highest under quadratic curves, and increase with the increase of radius. (2) The value of radial stress is smallest under involute curve, and is the largest under straight line. Value of radial stress is often used as the criterion of cracking limit, so its distribution laws can provide references for studying the condition of cracking in multi-pass conventional spinning under different roller-trace. (3) Tangential stress is compressive stress. Absolute value of tangential stress is the smallest under involute curve, and values of tangential stress are close between other two curves. The distribution laws of tangential stress can serve as a significant guide to research the critical condition of wrinkling in multi-pass conventional spinning under different roller-trace. (4) The reduction of thickness is the smallest under involute curve. The distribution of the thickness strain is very unequal under quadratic curves. The results obtained can provide references for selecting reasonable roller-trace in multi-pass conventional spinning.
文摘In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results.
基金provided by the Fundamental Research Funds for the Central Universities(No.2014QNA02)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT13098)+3 种基金the National Basic Research Program of China(No.2011CB201205)the National Natural Science Foundation of China(No.51404261)the Natural Science Foundation of Jiangsu Province(No.BK20140196)China PostdoctoralScience Foundation funded project(No.2014M551057)
文摘Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at varying orientations were applied. The results indicate that stress concentrations, roadway deformation and failure increase in magnitude and extent as the excavation angle with respect to the maximum horizontal stress increases. In addition, the stress adjacent to the coal-rock interface sharply varies in space and evolves with time; coal is much more vulnerable to deformation and failure than rock.The results provide insights into the layout of roadways excavated through a coal seam. Roadways should be designed parallel or at a narrow angle to the maximum horizontal stress. The concentrated stress at the top corner of the face-end should be reduced in advance, and the coal seam should be reinforced immediately after excavation.
基金funded by Shanxi Province Technology Innovation Guidance Special Project(2020QFY03-05)Shanxi Province Printing and Packaging Key Laboratory Project(16JS081).
文摘Environmental contamination has been caused by petroleum-based polymeric materials in the melt deposition process.Nowadays biodegradable materials have been widely used in the fused deposition modeling(FDM)industry,such as polylactic acid(PLA).However,internal complex thermal stress and deformations in part caused by an uneven distribution of PLA filament deposition temperatures during FDM,which will seriously affect the geometric accuracy of the printed part.In order to reduce material waste and environmental pollution during the printing process,the accuracy of PLA part can be improved.Herein,numerical simulation was carried out to investigate the temperature field and stress field during the building and cooling process of cuboid specimens.The effects of printing path on the thermal stress and temperature field during the building process were mainly studied.The results show that the printing path has a significant effect on the stress distribution.The most uni-form stress distribution and the smallest deformation were obtained using the Zig Zag printing path.Finally,the residual stress during the cooling process was collected using strain gauges embedded at the mid-plane of the FDM built cuboid specimens.The simulation results are consistent with the experimental results.
文摘The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not hot cracking will occur. With rigid restraint hot cracking (crater cracking) will occur at the arc-stopping end, and such cracking usually will not occur without external restraint. But under restraint-free condition it is easy for terminal cracks to occur.
文摘An analytical model for dynamic recrystallization (DRX) is studied based on the relative grain size model proposed by Sakai and Jonas, and the characteristic flow behaviors under DRX are analyzed and simulated. Introducing the variation of dynamic grain size and the heterogeneous distribution of disolo- cation densities densities under DRX,a simple method for modeling and simulating DRX processes is developed by using Laplace transformation theory. The results derived from the present model agree well with the experimental results in literatures. This simulation can reproduce a number of features in DRX flow behaviors, for example,single and multiple peak flow behaviors followed by a steady state flow, the transition between them, and so on.
基金Projects(52074166,51774195,51704185)supported by the National Natural Science Foundation of ChinaProject(2019M652436)supported by the China Postdoctoral Science Foundation。
文摘In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.
文摘Laboratory tests revealed that the behavior of brick masonry under compressive cyclic loading is characterized by three distinct stress-strain curves. These three curves are termed as envelope curve, common point curve and stability point curve. The envelope curve is obtained by superimposing the cyclic peaks on the monotonic stress-strain curve. The common point curve is the locus of intersection points of loading and unloading curves of the cycles. If for the same cycle, the loading and unloading are repeated several times, the intersection points of loading and unloading paths will stabilize at a lower bound. The locus of these stabilized points (lower bound points) of all cycles form the stability point curve. Therefore, the stability point curve can be used as a measure for the allowable stress for masonry under cyclic loadings. The proposed cyclic allowable stress level is associated with the accumulation of residual (plastic) strain levels as a result of cyclic loading history. The permissible stress level was found to be about two thirds of the cyclic peak stress of the specimen.
基金conducted with funding provided by the California Energy Commission under the contract PIR-16-027 for Research on Risk Management Framework for Underground Natural Gas infrastructure in California。
文摘In this study,we numerically investigate the influence of hysteretic stress path behavior on the seal integrity during underground gas storage operations in a depleted reservoir.Our study area is the Honor Rancho Underground Storage Facility in Los Angeles County(California,USA),which was converted into an underground gas storage facility in 1975 after 20 years of oil and gas production.In our simulations,the geomechanical behavior of the sand reservoir is modeled using two models:(1)a linear elastic model(non-hysteretic stress path)that does not take into consideration irreversible deformation,and(2)a plastic cap mechanical model which considers changes in rock elastic properties due to irreversible deformations caused by plastic reservoir compaction(hysteretic stress path).It shows that the irreversible compaction of the geological layer over geologic time and during the reservoir depletion can have important consequences on stress tensor orientation and magnitude.Ignoring depletion-induced irreversible compaction can lead to an over-estimation of the calculation of the maximum working reservoir pressure.Moreover,this irreversible compaction may bring the nearby faults closer to reactivation.However,regardless of the two models applied,the geomechanical analysis shows that for the estimated stress conditions applied in this study,the Honor Rancho Underground Storage Facility is being safely operated at pressures much below what would be required to compromise the seal integrity.
文摘The wellbore stability of a vertical well through the sandstone reservoir layers of the Asmari oil-bearing formation in south-west Iran is investigated.The safe drilling-fluid density range for maintaining wellbore stability is determined and simulated using FLAC3 D software and a finite volume model established with drilled strata geomechanical features.The initiation of plastic condition is used to determine the safe mud weight window(SMWW)in specific sandstone layers.The effects of rock strength parameters,major stresses around the wellbore and pore pressure on the SMWW are investigated for this wellbore.Sensitivity analysis reveals that a reduction in cohesion and internal friction angle values leads to a significant narrowing of the SMWW.On the other hand,the reduction of pore pressure and the ratio between maximum and minimum horizontal stresses causes the SMWW to widen significantly.The ability to readily quantify changes in SMWW indicates that the developed model is suitable as a well planning and monitoring tool.
文摘Regardless of beneficial associated with internal waste dump (IWD) method, practices of this method within boundaries of pit-slope have some serious problems on stability issues due to this area is zone of potential failure. This zone is known as dynamic reactive zone which is easy to deform by external force, and inherent dangers of failure posing a threat to slope. Therefore, it is paramount to study the induced shear stress behavior in this zone particularly when IWD method is adopted within this zone. In this paper, a numerical study for investigating IWD-induced shear stress behavior has been carried out using Finite Element Method (FEM) with Strength Reduction approach. Different scenarios as per pit-slope depths, IWD heights and buffer zone lengths have been accounted and simulated using PHASE 2 to understand changes in induced shear stress imposed on the pit-slope. It is found that shear stress imposed on pit slope seems change dramatically with increasing IWD height for case of buffer zone length is less than 100-m-long.
基金supported by the National Natural Science Foundation of China(Grant No.52125903).
文摘Rock masses in alpine canyon areas exhibit strong heterogeneity,discontinuity,and are subject to strong tectonic effects and stress unloading,leading to extremely complex distribution of in-situ stress.In addition,the occurrence of layered rock masses makes it more complex,with obvious anisotropic mechanical properties.This study proposes a comprehensive method for evaluating the stability of layered rock spillway tunnels in a hydropower station in an alpine canyon.First,the failure criterion and mechanical model of layered rock masses considering the anisotropy induced by the bedding plane and the true triaxial stress regime were established;an inversion theory and calculation procedure for in-situ stress in alpine canyon areas were then introduced.Finally,by using a self-developed numerical tool,i.e.CASRock,the stability of the layered rock spillway tunnel in a hydropower station was numerically analyzed.The results show that,affected by geological structure and stratigraphic lithology,there is significant differentiation in the in-situ stress in alpine canyons,with horizontal tectonic stress as the main factor.The occurrence of layered rock masses in the region has a significant impact on the stability of surrounding rock,and the angle between the bedding strike and the tunnel axis as well as the bedding dip both exert a significant influence on the failure characteristics of the surrounding rock.
文摘This paper has simulated the driving force of solidification crack of stainless steels, that is, stress/strain field in the trail of molten pool. Firstly, the effect of the deformation in the molten pool was eliminated after the element rebirth method was adopted. Secondly, the influence of solidification shrinkage was taken into account by increasing thermal expansion coefficients of the steels at elevated temperatures. Finally, the stress/strain distributions of different conditions have been computed and analyzed. Furthermore, the driving force curves of the solidification crack of the steels have been obtained by converting strain time curves into strain temperature curves, which founds a basis for predicting welding solidification crack.
文摘A metal additive manufacturing process results in a nearly net-shaped fabrication of parts directly from digital data.A local heat source melts the deposited material,and a part is built layer-by-layer.Residual stress and de-formation are critical issues experienced by additively manufactured parts.Modeling the additive manufacturing process provides important insights and can help determine an optimal build plan so as to minimize residual stress formation.Various approaches have been used for modeling of residual stresses,ranging from high-fidelity models to simplified models,for quicker results.This paper provides a state-of-the-art review of the approaches used to numerically model residual deformation and stresses in structures built using additive manufacturing.Fur-thermore,it describes the physical causes of residual-stress generation in an additively manufactured structure.
文摘During the welding, many phenomena occur. The materials deform under the action of residual stresses. This tendency is due to the high gradients of temperature during the process. These deformations are really difficult for many professionals operating in the area. In the goal to predict these variations, one has established the behaviour laws which will be applied to evaluate residual stresses and strains. This research is focused on the study of the Thermal Affected Zone (TAZ) during the welding of the 13Cr-4Ni martensitic stainless steel. The TAZ does not know any change of state (solid/liquid). It only knows the metallurgical phase change (austenite/martensite). There are three types of behaviour laws in this study: thermal, mechanical and metallurgical behaviour laws. The thermal behaviour law serves to evaluate the temperature field which induces the mechanical strains. The mechanical behaviour law serves to evaluate spherical stress (pressure) and deviatoric stress which compose the residual stress. It also helps to measure the total strain. The metallurgical behaviour law serves for the evaluation of the metallurgical phase proportions. To validate the modelling developed in this study, one has made the simulations to compare the results obtained with the analytical and experimental data.