Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based ...Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.展开更多
Accurate control of magnetic fields is crucial for cold-atom experiments,often necessitating custom-designed control systems due to limitations in commercially available power supplies.Here,we demonstrate precise and ...Accurate control of magnetic fields is crucial for cold-atom experiments,often necessitating custom-designed control systems due to limitations in commercially available power supplies.Here,we demonstrate precise and flexible control of a static magnetic field by employing a field-programmable gate array and a feedback loop.This setup enables us to maintain exceptionally stable current with a fractional stability of 1 ppm within 30 s.The error signal of the feedback loop exhibited a noise level of 10^(-5)A·Hz^(-1/2)for control bandwidths below 10 k Hz.Utilizing this precise magnetic field control system,we investigate the second-order Zeeman shift in the context of cold-atom coherent population-trapping (CPT)clocks.Our analysis reveals the second-order Zeeman coefficient to be 574.21 Hz/G^(2),with an uncertainty of 1.36 Hz/G^(2).Consequently,the magnetic field stabilization system we developed allows us to achieve a second-order Zeeman shift below10^(-14),surpassing the long-term stability of current cold-atom CPT clocks.展开更多
We examine the impact of electromagnetic field on the stability of compact stars corresponding to embedded class one metric using the concept of cracking. For this purpose, we develop the generalized hydrostatic equi-...We examine the impact of electromagnetic field on the stability of compact stars corresponding to embedded class one metric using the concept of cracking. For this purpose, we develop the generalized hydrostatic equi- librium equation for charged perfect fluid distribution of compact stars and perturb it by means of local density perturbation scheme to check the stability of inner matter configuration. We investigate the cracking of Her X-I, PSR 1937+21, PSR J 1614-2230, PSR J 0348+0432 and B.X J 1856-37. We conclude that PSR J 0348+0432 and RX J 1856-37 exhibit cracking when charge is introduced on these astrophysical objects.展开更多
A lot of previous experimental studies on ultramafic rocks(SiO2 unsaturated system)(Ringwood and Major, 1971;Irifune et al., 1986;Gasparik, 1989;Ono and Yasuda, 1996) have demonstrated that characteristics of Si-rich ...A lot of previous experimental studies on ultramafic rocks(SiO2 unsaturated system)(Ringwood and Major, 1971;Irifune et al., 1986;Gasparik, 1989;Ono and Yasuda, 1996) have demonstrated that characteristics of Si-rich and Al-deficient in garnet are resulted from coupled substitution of SiⅥ+MⅥ=AlⅥ+AlⅥ and SiⅥ+NaⅧ=AlⅥ+MⅧ(M=Mg, Fe, Ca) at ultrahigh pressures(UHP)(>5 GPa). The degree of substitution will be enhanced by increasing pressure which has a positive correlation with the content of SiⅥ, but a negative correlation with the content of AlⅥ in supersilic garnet. These experimental results established a theoretical foundation for further understanding the formation mechanism of the exsolution of pyroxene in garnet observed in deep mantle xenoliths and some ultrahigh pressure rocks, and also for estimating the pressure conditions of the formation of supersilic garnet before exsolution(Haggerty and Sautter, 1990;Sautter et al., 1991;van Roermund et al., 1998;Ye et al., 2000). Although some experimental studies on SiO2 saturated system have been reported(Irifune et al., 1994;Ono., 1998;Dobrazhinetskya and Green.,2007;Wu et al., 2009), the stability conditions of supersilic garnet are still lack of unified understanding. Therefore, HP-HT experiments were carried out on felsic rocks under conditions of 6–12 GPa and 1000℃–1400℃. Combined with previous experimental data, we try to figure out the minimum stable pressure and geological significants of supersilic garnet in SiO2 saturated system. Our experimental results from SiO2 saturated system show the minimum stable pressure of supersilic garnet should be ≥10 GP of stishovite stability field. These results are similar as that from experiments using starting composition similar to average upper continental crust reported by Irifune et al(1994) who yielded that garnet gradually became supersilic and Al-deficient as pressures increased above 10 GPa, especially in a pressure interval between 13 and 18 GPa. Moreover, experiments with different starting materials(Ono, 1998;Dobrazhinetskya and Green, 2007;Wu et al. 2009) also indicate the stable pressure condition of supersilic garnet is mainly ≥9 –10 GPa in SiO2 saturated system if data of small-size grains at low temperature are ignored due to measuring errors. Thus, it can be concluded that the minimum stable pressure of supersilic garnet in SiO2 saturated system is distinctly different from that in SiO2 unsaturated ultramafic rock system. The minimum pressure of the former is ≥9–10 GPa of stishovite stability field, while that of the latter is >5 GPa. Therefore, whether independent SiO2 phase exist or rock system is SiO2 saturated must be taken into considered when estimating the peak pressure of exsolutions in supersilic garnet in UHP rocks. Furthermore, pressure of >5 GPa directly estimated by supersilic garnet based on conclusion from SiO2 unsaturation system rather than SiO2 saturation in previous sdudies may have been underestimated and need to be re-estimated. Supersilic garnets have been recognized by interior exsolutions of clinopyroxene in garnet pyroxene from Yinggelisayi South Altyn(Liu et al., 2005), and exsolutions of rodlike quartz+rutile in felsic gneiss from Songshugou North Qinling(Liu et al., 2003). According to the experimental results from SiO2 unsaturated system, the peak metamorphic pressure of the both SiO2 saturated rocks have been estimated to be >7 Gpa and >5 Gpa, respectively. However, combined with the new experimental results above, we re-estimated that the peak metamorphic pressure of these SiO2 saturated rocks should be≥9–10 GPa at least, implying an ultra-deep subduction to mantle depth of stishovite stability field. This research, together with previous findings(Liu et al., 2007, 2018), shows that continental subduction to mantle depth(300 km) of stishovite stability field and then exhumation to the surface is obviously more common than previously thought, and the rock types are also diverse. At the same time, it provides a new indicator and thought for recognizing the subduction to the mantle depth of stishovite stability field in UHP metamorphic belt.展开更多
Excellent performances promoted by lattice oxygen have attracted wide attention for catalytic degradation of volatile organic compounds(VOCs).However,how to control the continuous regeneration of lattice oxygen from t...Excellent performances promoted by lattice oxygen have attracted wide attention for catalytic degradation of volatile organic compounds(VOCs).However,how to control the continuous regeneration of lattice oxygen from the support is seldom reported.In this study,we selected sepiolite supported manganese-cobalt oxides(Co_(x)Mn_(100-x)O_(y))as model catalysts by tuning Co/(Co+Mn)mass ratio(x=3%,10%,15%,and 20%)to enhance toluene degradation efficiency,owing to lattice oxygen regeneration by redox cycle existing at the interface and Mn species with high valence state,initiated by cobalt catalytic performance under the role of crystal field stability phase.The results of activity test show that the sepiolite-Co_(15)Mn_(85)O_(y)catalyst exhibit outperformances at 193℃with 10,000 h^(-1)GHSV.In addition,the catalyst existed at the bottom of the"volcano"curve correlated T_(50)or T_(90)with Co/(Co+Mn)weight ratio is sepiolite-Co_(15)Mn_(85)O_(y),conforming its outperformance.Further characterized by investigating active sites structural and electronic properties,the essential of superior catalytic activity is attributed to the grands of lattice oxygen continuous formation resulted from redox engineering based on the high atomic ratio of surface lattice oxygen with continuous refilled from the support and that of Mn^(4+)/Mn^(3+)cycle initiated by cobalt catalytic behaviors.All in all,redox engineering,not only promotes grands of active species reversible regeneration,but supplies an alternative catalyst design strategy towards the terrific efficiency-to-cost ratio performance.展开更多
This paper reports crystal structures, magnetic properties and thermal stability of TbCu7-type Sm(8.5)Fe((85.8-x)Co(4.5)Zr(1.2)Nbx(x = 0-1.8) melt-spun compounds and their nitrides, investigated by means of...This paper reports crystal structures, magnetic properties and thermal stability of TbCu7-type Sm(8.5)Fe((85.8-x)Co(4.5)Zr(1.2)Nbx(x = 0-1.8) melt-spun compounds and their nitrides, investigated by means of X-ray diffraction, vibrating sample magnetometer, flux meter and transmission electron microscope. It is found that the lattice parameter ratio c/a of TbCu7-type crystal structure increases with Nb substitution, which indicates that the Nb can increase the stability of the metastable phase in the Sm-Fe ribbons. Nb substitution impedes the formation of magnetic soft phase a-Fe in which reversed domains initially form during the magnetization reversal process. Meanwhile, Nb substitution refines grains and leads to homogeneous micro structure with augmented grain boundaries. Thus the exchange coupling pining field is enhanced and irreversible domain wall propagation gets suppressed. As a result, the magnetic properties are improved and the irreversible flux loss of magnets is notably decreased. A maximum value 771.7 kA/m of the intrinsic coercivity H(cj) is achieved in the 1.2 at% substituted samples.The irreversible flux loss for 2 h exposure at 120 ℃ declines from 8.26% for Nb-free magnets to 6.32% for magnets with 1.2 at% Nb substitution.展开更多
Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe- WTR to a con...Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe- WTR to a contaminated site, measuring the reduction in contaminant leaching, and discussing the design of delivery and mixing strategy for soil stabilization at field scale and present a cost-effective method of soil mixing by connnon contractor machinery. Soil contaminated by As, Cr, and Cu at an abandoned wood impregnation site was amended with 0.22% (dw) Fe-WTR. To evaluate the full scale amendment a 100 mtest site and a control site (without amendment) were monitored for 14 months. Also soil analysis of Fe to evaluate the degree of soil and Fe-WTR mixing was done. Stabilization with Fe-WTR had a significant effect on leachable contaminants, reducing pore water As by 93%, Cu by 91% and Cr by 95% in the upper samplers. Dosage and mixing of Fe-WTR in the soil proved to be difficult in the deeper part of the field, and Pire water concentrations of arsenic was generally higher.Despite water logged conditions no increase in dissolved iron or arsenic was observed in the amended soil. Our field scale amendment of contaminated soil was overall successful in decreasing leaching of As, Cr and Cu. With minor improvements in the mixing and delivery strategy, this stabilization method is suggested for use in cases, where leaching ofCu, Cr and As constitutes a risk for groundwater and freshwater.展开更多
In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid bounda...In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries.展开更多
基金supported by the National Natural Science Foundation of China(6110118561302145)
文摘Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.
基金supported by the National Key Research and Development Program of China (No. 2022YFA1404104)the National Natural Science Foundation of China (Nos. 12025509 and 12104521)。
文摘Accurate control of magnetic fields is crucial for cold-atom experiments,often necessitating custom-designed control systems due to limitations in commercially available power supplies.Here,we demonstrate precise and flexible control of a static magnetic field by employing a field-programmable gate array and a feedback loop.This setup enables us to maintain exceptionally stable current with a fractional stability of 1 ppm within 30 s.The error signal of the feedback loop exhibited a noise level of 10^(-5)A·Hz^(-1/2)for control bandwidths below 10 k Hz.Utilizing this precise magnetic field control system,we investigate the second-order Zeeman shift in the context of cold-atom coherent population-trapping (CPT)clocks.Our analysis reveals the second-order Zeeman coefficient to be 574.21 Hz/G^(2),with an uncertainty of 1.36 Hz/G^(2).Consequently,the magnetic field stabilization system we developed allows us to achieve a second-order Zeeman shift below10^(-14),surpassing the long-term stability of current cold-atom CPT clocks.
文摘We examine the impact of electromagnetic field on the stability of compact stars corresponding to embedded class one metric using the concept of cracking. For this purpose, we develop the generalized hydrostatic equi- librium equation for charged perfect fluid distribution of compact stars and perturb it by means of local density perturbation scheme to check the stability of inner matter configuration. We investigate the cracking of Her X-I, PSR 1937+21, PSR J 1614-2230, PSR J 0348+0432 and B.X J 1856-37. We conclude that PSR J 0348+0432 and RX J 1856-37 exhibit cracking when charge is introduced on these astrophysical objects.
基金granted by the National Natural Science Foundation of China(Grant Nos.41430209)the Chinese Ministry of Science and Technology(Grant No.2015CB856100)the MOST Special Fund from the State Key Laboratory of Continental Dynamics(Grant No.201210133)
文摘A lot of previous experimental studies on ultramafic rocks(SiO2 unsaturated system)(Ringwood and Major, 1971;Irifune et al., 1986;Gasparik, 1989;Ono and Yasuda, 1996) have demonstrated that characteristics of Si-rich and Al-deficient in garnet are resulted from coupled substitution of SiⅥ+MⅥ=AlⅥ+AlⅥ and SiⅥ+NaⅧ=AlⅥ+MⅧ(M=Mg, Fe, Ca) at ultrahigh pressures(UHP)(>5 GPa). The degree of substitution will be enhanced by increasing pressure which has a positive correlation with the content of SiⅥ, but a negative correlation with the content of AlⅥ in supersilic garnet. These experimental results established a theoretical foundation for further understanding the formation mechanism of the exsolution of pyroxene in garnet observed in deep mantle xenoliths and some ultrahigh pressure rocks, and also for estimating the pressure conditions of the formation of supersilic garnet before exsolution(Haggerty and Sautter, 1990;Sautter et al., 1991;van Roermund et al., 1998;Ye et al., 2000). Although some experimental studies on SiO2 saturated system have been reported(Irifune et al., 1994;Ono., 1998;Dobrazhinetskya and Green.,2007;Wu et al., 2009), the stability conditions of supersilic garnet are still lack of unified understanding. Therefore, HP-HT experiments were carried out on felsic rocks under conditions of 6–12 GPa and 1000℃–1400℃. Combined with previous experimental data, we try to figure out the minimum stable pressure and geological significants of supersilic garnet in SiO2 saturated system. Our experimental results from SiO2 saturated system show the minimum stable pressure of supersilic garnet should be ≥10 GP of stishovite stability field. These results are similar as that from experiments using starting composition similar to average upper continental crust reported by Irifune et al(1994) who yielded that garnet gradually became supersilic and Al-deficient as pressures increased above 10 GPa, especially in a pressure interval between 13 and 18 GPa. Moreover, experiments with different starting materials(Ono, 1998;Dobrazhinetskya and Green, 2007;Wu et al. 2009) also indicate the stable pressure condition of supersilic garnet is mainly ≥9 –10 GPa in SiO2 saturated system if data of small-size grains at low temperature are ignored due to measuring errors. Thus, it can be concluded that the minimum stable pressure of supersilic garnet in SiO2 saturated system is distinctly different from that in SiO2 unsaturated ultramafic rock system. The minimum pressure of the former is ≥9–10 GPa of stishovite stability field, while that of the latter is >5 GPa. Therefore, whether independent SiO2 phase exist or rock system is SiO2 saturated must be taken into considered when estimating the peak pressure of exsolutions in supersilic garnet in UHP rocks. Furthermore, pressure of >5 GPa directly estimated by supersilic garnet based on conclusion from SiO2 unsaturation system rather than SiO2 saturation in previous sdudies may have been underestimated and need to be re-estimated. Supersilic garnets have been recognized by interior exsolutions of clinopyroxene in garnet pyroxene from Yinggelisayi South Altyn(Liu et al., 2005), and exsolutions of rodlike quartz+rutile in felsic gneiss from Songshugou North Qinling(Liu et al., 2003). According to the experimental results from SiO2 unsaturated system, the peak metamorphic pressure of the both SiO2 saturated rocks have been estimated to be >7 Gpa and >5 Gpa, respectively. However, combined with the new experimental results above, we re-estimated that the peak metamorphic pressure of these SiO2 saturated rocks should be≥9–10 GPa at least, implying an ultra-deep subduction to mantle depth of stishovite stability field. This research, together with previous findings(Liu et al., 2007, 2018), shows that continental subduction to mantle depth(300 km) of stishovite stability field and then exhumation to the surface is obviously more common than previously thought, and the rock types are also diverse. At the same time, it provides a new indicator and thought for recognizing the subduction to the mantle depth of stishovite stability field in UHP metamorphic belt.
基金Supported by the National Natural Science Foundation of China(21707023)Provincial Key Research and Development Plan of Hunan Province(2018SK2034)New Faculty Start-Up Funding from Xiangtan University(18QDZ16)。
文摘Excellent performances promoted by lattice oxygen have attracted wide attention for catalytic degradation of volatile organic compounds(VOCs).However,how to control the continuous regeneration of lattice oxygen from the support is seldom reported.In this study,we selected sepiolite supported manganese-cobalt oxides(Co_(x)Mn_(100-x)O_(y))as model catalysts by tuning Co/(Co+Mn)mass ratio(x=3%,10%,15%,and 20%)to enhance toluene degradation efficiency,owing to lattice oxygen regeneration by redox cycle existing at the interface and Mn species with high valence state,initiated by cobalt catalytic performance under the role of crystal field stability phase.The results of activity test show that the sepiolite-Co_(15)Mn_(85)O_(y)catalyst exhibit outperformances at 193℃with 10,000 h^(-1)GHSV.In addition,the catalyst existed at the bottom of the"volcano"curve correlated T_(50)or T_(90)with Co/(Co+Mn)weight ratio is sepiolite-Co_(15)Mn_(85)O_(y),conforming its outperformance.Further characterized by investigating active sites structural and electronic properties,the essential of superior catalytic activity is attributed to the grands of lattice oxygen continuous formation resulted from redox engineering based on the high atomic ratio of surface lattice oxygen with continuous refilled from the support and that of Mn^(4+)/Mn^(3+)cycle initiated by cobalt catalytic behaviors.All in all,redox engineering,not only promotes grands of active species reversible regeneration,but supplies an alternative catalyst design strategy towards the terrific efficiency-to-cost ratio performance.
基金Project supported by the National Natural Science Foundation of China(51401028)
文摘This paper reports crystal structures, magnetic properties and thermal stability of TbCu7-type Sm(8.5)Fe((85.8-x)Co(4.5)Zr(1.2)Nbx(x = 0-1.8) melt-spun compounds and their nitrides, investigated by means of X-ray diffraction, vibrating sample magnetometer, flux meter and transmission electron microscope. It is found that the lattice parameter ratio c/a of TbCu7-type crystal structure increases with Nb substitution, which indicates that the Nb can increase the stability of the metastable phase in the Sm-Fe ribbons. Nb substitution impedes the formation of magnetic soft phase a-Fe in which reversed domains initially form during the magnetization reversal process. Meanwhile, Nb substitution refines grains and leads to homogeneous micro structure with augmented grain boundaries. Thus the exchange coupling pining field is enhanced and irreversible domain wall propagation gets suppressed. As a result, the magnetic properties are improved and the irreversible flux loss of magnets is notably decreased. A maximum value 771.7 kA/m of the intrinsic coercivity H(cj) is achieved in the 1.2 at% substituted samples.The irreversible flux loss for 2 h exposure at 120 ℃ declines from 8.26% for Nb-free magnets to 6.32% for magnets with 1.2 at% Nb substitution.
文摘Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe- WTR to a contaminated site, measuring the reduction in contaminant leaching, and discussing the design of delivery and mixing strategy for soil stabilization at field scale and present a cost-effective method of soil mixing by connnon contractor machinery. Soil contaminated by As, Cr, and Cu at an abandoned wood impregnation site was amended with 0.22% (dw) Fe-WTR. To evaluate the full scale amendment a 100 mtest site and a control site (without amendment) were monitored for 14 months. Also soil analysis of Fe to evaluate the degree of soil and Fe-WTR mixing was done. Stabilization with Fe-WTR had a significant effect on leachable contaminants, reducing pore water As by 93%, Cu by 91% and Cr by 95% in the upper samplers. Dosage and mixing of Fe-WTR in the soil proved to be difficult in the deeper part of the field, and Pire water concentrations of arsenic was generally higher.Despite water logged conditions no increase in dissolved iron or arsenic was observed in the amended soil. Our field scale amendment of contaminated soil was overall successful in decreasing leaching of As, Cr and Cu. With minor improvements in the mixing and delivery strategy, this stabilization method is suggested for use in cases, where leaching ofCu, Cr and As constitutes a risk for groundwater and freshwater.
文摘In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries.