The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffracti...The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.展开更多
An A1-5.8Mg-0.4Mn-0.35(Sc+Zr) (mass fraction, %) alloy sheet was prepared using water chilling copper mould ingot metallurgy processing which was protected by active flux. The influence of stabilizing annealing o...An A1-5.8Mg-0.4Mn-0.35(Sc+Zr) (mass fraction, %) alloy sheet was prepared using water chilling copper mould ingot metallurgy processing which was protected by active flux. The influence of stabilizing annealing on mechanical properties and microstructure of the cold rolling sheet was studied. The results show that the strength and hardness of the alloy decrease, while the elongation increases with increasing the stabilizing annealing temperature. With the increase of stabilizing annealing time, the strength and hardness of the alloy drop slightly but its ductility exhibits no change. Partial recovery and recrystallization orderly occur with the increase of annealing temperature during stabilizing treatment. Only different degrees of recovery occur in the alloys annealed below 400 ℃ for 1 h. Partial recrystallization occurs after annealed at 450 ℃ for 1 h. By annealing at 300 ℃ for 1 h, the alloy can obtain the optimum application values of δb, δ0.2 and δ, which are 436 MPa, 327 MPa and 16.7%, respectively.展开更多
The history of railway and highway construction in permafrost zones in Russia, the United States, Canada, and China spans more than 110 years. Nonetheless, no railway track or highway has yet been built in such area t...The history of railway and highway construction in permafrost zones in Russia, the United States, Canada, and China spans more than 110 years. Nonetheless, no railway track or highway has yet been built in such area that is impervious to deformation caused by subsidence resulting from the thawing of ice-rich subgrade soils. This paper presents data on the roadbed states of the Trans- baikalian and the Baikal-Amur Railways as well as the Russian "AMUR" Chita-Khabarovsk Highway. It also discusses the feasi- bility of roadbed stability maintenance using methods based on the reduction of the mean annual ground temperature and roadbed preservation in a permafrost state by means of the natural cooling and heating factors ratio regulation resulting in a reduction of the heat generation in the roadbed and the adjoining area accompanied by an increase of heat consumption with help of the sun-precipitation protective sheds (awnings), rock covers, dolomite powder (reflective paint), cooling tube and thermosyphons as well as tower supports and corrugated pipe culverts stability.展开更多
Two 15Cr–9Ni–Nb austenitic stainless steel weld metals with 2.5%Si and 3.5%Si(namely 2.5Si and 3.5Si samples,respectively)were designed and prepared through tungsten inert gas(TIG)welding and then hold at 800℃ or ...Two 15Cr–9Ni–Nb austenitic stainless steel weld metals with 2.5%Si and 3.5%Si(namely 2.5Si and 3.5Si samples,respectively)were designed and prepared through tungsten inert gas(TIG)welding and then hold at 800℃ or 900℃ for 3 h for stabilization.The microstructure and mechanical properties were investigated both for the as-welded and after-stabilization heat treatment(SHT)weld metals.There are 3.0–4.0%martensite and 2.5–3.5%δferrite in the 2.5Si as-welded weld metal and 6.0–7.0%δferrite in the 3.5Si as-welded weld metal.After SHT,a large amount of martensite formed in the 2.5Si weld metal,andδ→γtransition occurred during the SHT process both for the 2.5Si and 3.5Si weld metals.There were a large amount of coarse NbC and few nanoscale NbC in the as-welded weld metal.During the SHT,a large amount of nanoscale NbC formed in the matrix,while a large number of G phases formed at the austenite grain boundaries and theδ/γinterfaces.The decrease in solid solution C andδferrite content led to the decline of the yield strength of the weld metal after SHT.The martensite formed in 2.5Si weld metal after SHT had less effect on strength because of its low carbon content.The G phases formed during the SHT reduced the impact energy of the weld metal because it promoted the intergranular fracture,while theδ→γtransition reduced the amount of theδ/γinterfaces and avoided the intergranular fracture,which was beneficial for the impact toughness of the weld metals.展开更多
The stability of beta zeollie in acid solution and the effect of acid treatment on the polymorphs in beta zeolite were studied. This zeolite is easily dealuminated by HCI treatment but its framework highly resistent t...The stability of beta zeollie in acid solution and the effect of acid treatment on the polymorphs in beta zeolite were studied. This zeolite is easily dealuminated by HCI treatment but its framework highly resistent to acidity.In β zeolite, polymorph A is less stable than polymorph B.The chirality of β zeolite can be modified by the method of acid treatment.展开更多
Parametric study of tip injection was implemented experimentally on a subsonic axial flow compressor to understand the underlying flow mechanisms of stability improvement of the compressor with discrete tip injection....Parametric study of tip injection was implemented experimentally on a subsonic axial flow compressor to understand the underlying flow mechanisms of stability improvement of the compressor with discrete tip injection.Injector throat height varied from 2 to 6 times the height of rotor tip clearance,and circumferential coverage percentage ranged from 8.3% to 25% of the annulus.Static pressure fluctuations over the rotor tip were measured with fast-response pressure transducers.Whole-passage time-accurate simulations were also carried out to help us understand the flow details.The combinations of tip injection with traditional casing treatments were experimentally studied to generate an engineering-acceptable method of compressor stall control.The results indicate that the maximum stability improvement is achieved when injectors are choked despite their different sizes.The effect of circumferential coverage percentage on compressor stability depends on the value of injector throat height for un-choked injectors,and vice versa.Tip blockage in the blade passage is greatly reduced by the choked injectors,which is the primary reason for stability enhancement.The accomplishment of blockage diminishment is maintained in the circumferential direction with the unsteady effect of tip injection,which manifests as a hysteresis between the recovery of tip blockage and the recovery of tip leakage vortex.The unsteady effect is primarily responsible for the effectiveness of tip injection with a partial circumferential coverage.Tip injection cannot enhance the stability of the rotor with axial slots significantly,but it can improve the stability of the rotor with circumferential grooves further.The combined structure of tip injection with circumferential grooves is an alternative for engineering application.展开更多
Generally, casing treatment(CT) is a passivity method to enhance the stall margin of fan/compressor. A novel casing treatment based on the small disturbance theory and vortex and wave interaction suggestion is a met...Generally, casing treatment(CT) is a passivity method to enhance the stall margin of fan/compressor. A novel casing treatment based on the small disturbance theory and vortex and wave interaction suggestion is a method combining passive control and active control, which has been proved effective at enhancing the stall margin of fan/compressor in experiment. In order to investigate the mechanism of this kind of casing treatment, an experimental investigation of a stall precursor-suppressed(SPS) casing treatment with air suction or blowing air is conducted in the present paper. The SPS casing treatment is designed to suppressing stall precursors to realize stall margin enhancement in turbomachinery. The experimental results show that the casing treatment with blowing air of small quantity can improve the stall margin by about 8% with about 1% efficiency loss. By contrast, the SPS casing treatment with micro-bias flow does not improve the stall margin much more than that without bias flow, even worse. Meanwhile, the present investigation has also attempted to reveal the mechanism of stall margin improvement with the casing treatment.It is found that the stall margin improvements vary with the modification of the unsteady shedding flow and the unsteady wall boundary impedance. The experimental results agree fairly well with the theoretical prediction using a flow stability model of rotating stall.展开更多
Fe/Al drinking water treatment residuals(WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications coul...Fe/Al drinking water treatment residuals(WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate.Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils(p 〈 0.001). Up to 30% of the previously adsorbed glyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction(Na HCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction(HCl-glyphosate) and concomitantly reduced that of the Na HCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution p H on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils.展开更多
To improve thermal stability of the Al65Cu16.5Ti18.5 amorphous powder,structural modification of the amorphous powder was performed through annealing and post milling.Annealing above the crystallization temperature(T...To improve thermal stability of the Al65Cu16.5Ti18.5 amorphous powder,structural modification of the amorphous powder was performed through annealing and post milling.Annealing above the crystallization temperature(Tx) not only induced nanoscale intermetallics to precipitate in the amorphous powder,but also increased Cu atomic percentage within the residual amorphous phase.Post milling induced the amorphization of the nanocrystal intermetallics and the formation of Cu9Al4 from the residual amorphous phase.Thus,a mixed structure consisting of amorphous phase and Cu9Al4 was obtained in the powder after annealing and post milling(the APMed powder).The phase constituent in the APMed powder did not change during the post annealing,which exhibited significantly improved thermal stability in comparison with the as-milled amorphous powder.展开更多
In the present work,Zn-10 Al-2 Cu-0.05 Ti(ZA10)alloy tubes with a diameter of 12.5 mm and wall thickness of 1.2 mm were fabricated by one-pass and double-pass Conform continuous extrusion.A stabilizing heat treatment[...In the present work,Zn-10 Al-2 Cu-0.05 Ti(ZA10)alloy tubes with a diameter of 12.5 mm and wall thickness of 1.2 mm were fabricated by one-pass and double-pass Conform continuous extrusion.A stabilizing heat treatment[350℃,30 min(furnace cooling)+120℃,12 h(air cooling)]was also applied to some of the double-pass tubes to improve the quality of their weld seams.The yield strength,ultimate tensile strength,elongation and expansion ratio of the one-pass continuous extrusion tube were 268.4 MPa,294.3 MPa,13.8%and 5.5%,respectively.Double-pass continuous extrusion improved these values to 278.4 MPa,317.2 MPa,15.4%and 11.4%,respectively.Double-pass tubes also had fewer aggregations of Al-αprecipitates along the welding seam,which improved seam quality and caused cracks to appear in the matrix,away from the weld-affected zone,during expansion testing.Heat-treated double-pass tubes exhibited superior yield strength(283.9 MPa)and ultimate tensile strength(328.5 MPa)but lower elongation(10.2%)and expansion ratios(10.3%).Additionally,the heat-treated tubes exhibited markedly lower elongation at room temperature due to the remarkable blockage of dislocation motions by fine-scale lamellar(α+η)eutectoid structures and a lower size effect when stretched.展开更多
基金Project(2009BAE71B00) supported by the National Key Technology R&D Program during the Eleventh Five-Year Plan Period
文摘The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.
基金Project(2006AA03Z523)supported by the National High Technology Research and Development Program of China
文摘An A1-5.8Mg-0.4Mn-0.35(Sc+Zr) (mass fraction, %) alloy sheet was prepared using water chilling copper mould ingot metallurgy processing which was protected by active flux. The influence of stabilizing annealing on mechanical properties and microstructure of the cold rolling sheet was studied. The results show that the strength and hardness of the alloy decrease, while the elongation increases with increasing the stabilizing annealing temperature. With the increase of stabilizing annealing time, the strength and hardness of the alloy drop slightly but its ductility exhibits no change. Partial recovery and recrystallization orderly occur with the increase of annealing temperature during stabilizing treatment. Only different degrees of recovery occur in the alloys annealed below 400 ℃ for 1 h. Partial recrystallization occurs after annealed at 450 ℃ for 1 h. By annealing at 300 ℃ for 1 h, the alloy can obtain the optimum application values of δb, δ0.2 and δ, which are 436 MPa, 327 MPa and 16.7%, respectively.
文摘The history of railway and highway construction in permafrost zones in Russia, the United States, Canada, and China spans more than 110 years. Nonetheless, no railway track or highway has yet been built in such area that is impervious to deformation caused by subsidence resulting from the thawing of ice-rich subgrade soils. This paper presents data on the roadbed states of the Trans- baikalian and the Baikal-Amur Railways as well as the Russian "AMUR" Chita-Khabarovsk Highway. It also discusses the feasi- bility of roadbed stability maintenance using methods based on the reduction of the mean annual ground temperature and roadbed preservation in a permafrost state by means of the natural cooling and heating factors ratio regulation resulting in a reduction of the heat generation in the roadbed and the adjoining area accompanied by an increase of heat consumption with help of the sun-precipitation protective sheds (awnings), rock covers, dolomite powder (reflective paint), cooling tube and thermosyphons as well as tower supports and corrugated pipe culverts stability.
基金financially supported by the China Institute of Atomic Energy(E141L803J1)the innovation project of Shenyang National Laboratory for Materials Science(SYNL-2022).
文摘Two 15Cr–9Ni–Nb austenitic stainless steel weld metals with 2.5%Si and 3.5%Si(namely 2.5Si and 3.5Si samples,respectively)were designed and prepared through tungsten inert gas(TIG)welding and then hold at 800℃ or 900℃ for 3 h for stabilization.The microstructure and mechanical properties were investigated both for the as-welded and after-stabilization heat treatment(SHT)weld metals.There are 3.0–4.0%martensite and 2.5–3.5%δferrite in the 2.5Si as-welded weld metal and 6.0–7.0%δferrite in the 3.5Si as-welded weld metal.After SHT,a large amount of martensite formed in the 2.5Si weld metal,andδ→γtransition occurred during the SHT process both for the 2.5Si and 3.5Si weld metals.There were a large amount of coarse NbC and few nanoscale NbC in the as-welded weld metal.During the SHT,a large amount of nanoscale NbC formed in the matrix,while a large number of G phases formed at the austenite grain boundaries and theδ/γinterfaces.The decrease in solid solution C andδferrite content led to the decline of the yield strength of the weld metal after SHT.The martensite formed in 2.5Si weld metal after SHT had less effect on strength because of its low carbon content.The G phases formed during the SHT reduced the impact energy of the weld metal because it promoted the intergranular fracture,while theδ→γtransition reduced the amount of theδ/γinterfaces and avoided the intergranular fracture,which was beneficial for the impact toughness of the weld metals.
文摘The stability of beta zeollie in acid solution and the effect of acid treatment on the polymorphs in beta zeolite were studied. This zeolite is easily dealuminated by HCI treatment but its framework highly resistent to acidity.In β zeolite, polymorph A is less stable than polymorph B.The chirality of β zeolite can be modified by the method of acid treatment.
基金the support of the National Natural Science Foundation of China(Nos.51576162 and51236006)The Doctorate Foundation of Northwestern Polytechnical University(No.CX201422)
文摘Parametric study of tip injection was implemented experimentally on a subsonic axial flow compressor to understand the underlying flow mechanisms of stability improvement of the compressor with discrete tip injection.Injector throat height varied from 2 to 6 times the height of rotor tip clearance,and circumferential coverage percentage ranged from 8.3% to 25% of the annulus.Static pressure fluctuations over the rotor tip were measured with fast-response pressure transducers.Whole-passage time-accurate simulations were also carried out to help us understand the flow details.The combinations of tip injection with traditional casing treatments were experimentally studied to generate an engineering-acceptable method of compressor stall control.The results indicate that the maximum stability improvement is achieved when injectors are choked despite their different sizes.The effect of circumferential coverage percentage on compressor stability depends on the value of injector throat height for un-choked injectors,and vice versa.Tip blockage in the blade passage is greatly reduced by the choked injectors,which is the primary reason for stability enhancement.The accomplishment of blockage diminishment is maintained in the circumferential direction with the unsteady effect of tip injection,which manifests as a hysteresis between the recovery of tip blockage and the recovery of tip leakage vortex.The unsteady effect is primarily responsible for the effectiveness of tip injection with a partial circumferential coverage.Tip injection cannot enhance the stability of the rotor with axial slots significantly,but it can improve the stability of the rotor with circumferential grooves further.The combined structure of tip injection with circumferential grooves is an alternative for engineering application.
基金supported by National Natural Science Foundation of China (Nos. 51236001, 51406229 and 51106154)National Basic Research Program of China (No. 2012CB720201)+1 种基金Aeronautical Science Foundation of China (No. 2014ZB51018)Fundamental Research Funds for the Central Universities
文摘Generally, casing treatment(CT) is a passivity method to enhance the stall margin of fan/compressor. A novel casing treatment based on the small disturbance theory and vortex and wave interaction suggestion is a method combining passive control and active control, which has been proved effective at enhancing the stall margin of fan/compressor in experiment. In order to investigate the mechanism of this kind of casing treatment, an experimental investigation of a stall precursor-suppressed(SPS) casing treatment with air suction or blowing air is conducted in the present paper. The SPS casing treatment is designed to suppressing stall precursors to realize stall margin enhancement in turbomachinery. The experimental results show that the casing treatment with blowing air of small quantity can improve the stall margin by about 8% with about 1% efficiency loss. By contrast, the SPS casing treatment with micro-bias flow does not improve the stall margin much more than that without bias flow, even worse. Meanwhile, the present investigation has also attempted to reveal the mechanism of stall margin improvement with the casing treatment.It is found that the stall margin improvements vary with the modification of the unsteady shedding flow and the unsteady wall boundary impedance. The experimental results agree fairly well with the theoretical prediction using a flow stability model of rotating stall.
基金supported by the National Natural Science Foundation of China (Nos.51278055, 51179008)the National Key Technology R&D Program (No.2012BAJ21B08)the National Public Benefit (Environmental) Research Foundation of China (No.201109009)
文摘Fe/Al drinking water treatment residuals(WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate.Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils(p 〈 0.001). Up to 30% of the previously adsorbed glyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction(Na HCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction(HCl-glyphosate) and concomitantly reduced that of the Na HCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution p H on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils.
基金supported by the National Natural Science Foundation of China(Grant Nos.51271036 and 51471035)
文摘To improve thermal stability of the Al65Cu16.5Ti18.5 amorphous powder,structural modification of the amorphous powder was performed through annealing and post milling.Annealing above the crystallization temperature(Tx) not only induced nanoscale intermetallics to precipitate in the amorphous powder,but also increased Cu atomic percentage within the residual amorphous phase.Post milling induced the amorphization of the nanocrystal intermetallics and the formation of Cu9Al4 from the residual amorphous phase.Thus,a mixed structure consisting of amorphous phase and Cu9Al4 was obtained in the powder after annealing and post milling(the APMed powder).The phase constituent in the APMed powder did not change during the post annealing,which exhibited significantly improved thermal stability in comparison with the as-milled amorphous powder.
基金financially supported by the National 11th Five-Year Science and Technology Support Program of China(No.2009BAE71B00)Hunan Science and Technology Plan Key Project(No.2012GK4012)。
文摘In the present work,Zn-10 Al-2 Cu-0.05 Ti(ZA10)alloy tubes with a diameter of 12.5 mm and wall thickness of 1.2 mm were fabricated by one-pass and double-pass Conform continuous extrusion.A stabilizing heat treatment[350℃,30 min(furnace cooling)+120℃,12 h(air cooling)]was also applied to some of the double-pass tubes to improve the quality of their weld seams.The yield strength,ultimate tensile strength,elongation and expansion ratio of the one-pass continuous extrusion tube were 268.4 MPa,294.3 MPa,13.8%and 5.5%,respectively.Double-pass continuous extrusion improved these values to 278.4 MPa,317.2 MPa,15.4%and 11.4%,respectively.Double-pass tubes also had fewer aggregations of Al-αprecipitates along the welding seam,which improved seam quality and caused cracks to appear in the matrix,away from the weld-affected zone,during expansion testing.Heat-treated double-pass tubes exhibited superior yield strength(283.9 MPa)and ultimate tensile strength(328.5 MPa)but lower elongation(10.2%)and expansion ratios(10.3%).Additionally,the heat-treated tubes exhibited markedly lower elongation at room temperature due to the remarkable blockage of dislocation motions by fine-scale lamellar(α+η)eutectoid structures and a lower size effect when stretched.