An electrically driven, single-longitudinal-mode GaAs based photonic crystal (PC) ridge waveguide (RWG) laser emitting at around 850 nm is demonstrated. The single-longitudinal-mode lasing characteristic is achiev...An electrically driven, single-longitudinal-mode GaAs based photonic crystal (PC) ridge waveguide (RWG) laser emitting at around 850 nm is demonstrated. The single-longitudinal-mode lasing characteristic is achieved by introducing the PC to the RWG laser. The triangle PC is etched on both sides of the ridge by photolithography and inductive coupled plasma (ICP) etching. The lasing spectra of the RWG lasers with and without the PC are studied, and the result shows that the PC purifies the longitudinal mode. The power per facet versus current and current-voltage characteristics have also been studied and compared.展开更多
We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber ...We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser.展开更多
We present a single-longitudinal-mode continuous-wave Ho^3+:YVO4 laser at 2.05 μm pumped by a Tm-doped fibre laser. Use of a cavity etalon enables spectral selectivity for single-mode operation. The highest power a...We present a single-longitudinal-mode continuous-wave Ho^3+:YVO4 laser at 2.05 μm pumped by a Tm-doped fibre laser. Use of a cavity etalon enables spectral selectivity for single-mode operation. The highest power achieved in the single longitudinal mode at 2052.5 nm is 282 mW at a slope efficiency of 6.9%, corresponding to an optical conversion efficiency of 3.0%. These features demonstrate that this single-longitudinal-mode Ho:YVO4 laser is suitable for use as a seed laser in some Lidar systems(e.g., coherent Lidar or differential absorption Lidar). To the best of our knowledge, this is the first report on such a single-longitudinal-mode Ho:YVO4 laser at 2.05 μm.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 91121019)the National Basic Research Program of China (Grant No. 2013CB632105)
文摘An electrically driven, single-longitudinal-mode GaAs based photonic crystal (PC) ridge waveguide (RWG) laser emitting at around 850 nm is demonstrated. The single-longitudinal-mode lasing characteristic is achieved by introducing the PC to the RWG laser. The triangle PC is etched on both sides of the ridge by photolithography and inductive coupled plasma (ICP) etching. The lasing spectra of the RWG lasers with and without the PC are studied, and the result shows that the PC purifies the longitudinal mode. The power per facet versus current and current-voltage characteristics have also been studied and compared.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61077069 and 61107094)the Innovation Foundation for Excellent Doctoral Candidates of Beijing Jiaotong University, China (Grant No. 2011YJS202)
文摘We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser.
基金supported by the National Natural Science Foundation of China(Grant Nos.61308009 and 61405047)the China Postdoctoral Science Foundation(Grant Nos.2016T90287 and 2015M570290)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.HIT.NSRIF.2015042)the Postdoctoral Science Foundation of Heilongjiang Province,China(Grant No.LBH-Z14085)
文摘We present a single-longitudinal-mode continuous-wave Ho^3+:YVO4 laser at 2.05 μm pumped by a Tm-doped fibre laser. Use of a cavity etalon enables spectral selectivity for single-mode operation. The highest power achieved in the single longitudinal mode at 2052.5 nm is 282 mW at a slope efficiency of 6.9%, corresponding to an optical conversion efficiency of 3.0%. These features demonstrate that this single-longitudinal-mode Ho:YVO4 laser is suitable for use as a seed laser in some Lidar systems(e.g., coherent Lidar or differential absorption Lidar). To the best of our knowledge, this is the first report on such a single-longitudinal-mode Ho:YVO4 laser at 2.05 μm.