期刊文献+
共找到188,256篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of introducing Zr,Ti,Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy
1
作者 Junjie Li Wenbo Yu +5 位作者 Zhenyu Sun Weichen Zheng Liangwei Zhang Yanling Xue Wenning Liu Shoumei Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期147-153,共7页
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro... High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties. 展开更多
关键词 aluminium alloy high-pressure die-casting externally solidified crystals non-heat treatment
下载PDF
A high entropy stabilized perovskite oxide La_(0.2)Pr_(0.2)Sm_(0.2)Gd_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)as a promising air electrode for reversible solid oxide cells
2
作者 LI Ruoyu LI Xiaoyu +2 位作者 ZHANG Jinke GAO Yuan LING Yihan 《燃料化学学报(中英文)》 北大核心 2025年第2期282-290,共9页
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p... Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC. 展开更多
关键词 reversible solid oxide cell high entropy stabilized perovskite air electrode electrochemical performance
下载PDF
Effect of cyclic drying and wetting on engineering properties of heavy metal contaminated soils solidified/stabilized with fly ash 被引量:3
3
作者 ZHA Fu-sheng LIU Jing-jing +1 位作者 XU Long CUI Ke-rui 《Journal of Central South University》 SCIE EI CAS 2013年第7期1947-1952,共6页
Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves... Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles. 展开更多
关键词 solidification/stabilization (S/S) heavy metal contaminated soil drying and wetting cycles long-term stability
下载PDF
Comparison of properties of traditional and accelerated carbonated solidified/stabilized contaminated soils
4
作者 LIU Jiangying XU Dimin +3 位作者 XIONG Lan Colin HILLS Paula CAREY Kevin GARDNER 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第5期593-598,共6页
The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four yea... The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four years and sampled at various depths in a controlled manner. The chemical properties (e.g., degree of carbonation (DOC), pH, electrical conductivity (EC)) and physical properties (e.g., moisture content (MC), liquid limit CLL), plastic limit (PL), plasticity index (PI)) of the samples untreated and treated with the traditional and accelerated carbonated S/S processes were analyzed. Their variations on the depths of the soils were also studied. The result showed that the broad geotechnical properties of the soils, manifested in their PIs, were related to the concentration of the water soluble ions and in particular the free calcium ions. The samples treated with the accelerated carbonation technology (ACT), and the untreated samples contained limited number of free calcium ions in solutions and consequently interacted with waters in a similar way. Compared with the traditional cement-based S/S technology, e.g., treatment with ordinary portland cement (OPC) or EnvirOceM, ACT caused the increase of the PI of the treated soil and made it more stable during long-term weathering. The PI values for the four soils ascended according to the order: the EnvirOceM soil, the OPC soil, the ACT soil, and the untreated soil while their pH and EC values descended according to the same order. 展开更多
关键词 solidified/stabilized accelerated carbonation contaminated soil electrical conductivity liquid limit plastic limit plasticity index
下载PDF
Atom substitution of the solid-state electrolyte Li_(10)GeP_(2)S_(12)for stabilized all-solid-state lithium metal batteries 被引量:1
5
作者 Zijing Wan Xiaozhen Chen +3 位作者 Ziqi Zhou Xiaoliang Zhong Xiaobing Luo Dongwei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期28-38,I0002,共12页
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati... Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes. 展开更多
关键词 Atom substitution Solid-state electrolyte Machine learning stabilized interface
下载PDF
Microstructure and thermal stability behavior of a rapidly solidified Al-Ti-Fe-Cr alloy 被引量:3
6
作者 CHEN Yiqing, CAO Qingping, and SU YongSchool of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China 《Rare Metals》 SCIE EI CAS CSCD 2002年第3期207-212,共6页
A rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr (mass fraction in percent) alloywas prepared by melt spinning. As-quenched and as-annealed microstructures were studied by X-raydiffractometry (XRD), transmission electron mic... A rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr (mass fraction in percent) alloywas prepared by melt spinning. As-quenched and as-annealed microstructures were studied by X-raydiffractometry (XRD), transmission electron microscopy (TEM), high-resolution transmission electronmicroscopy (HREM) and energy dispersive spectrum (EDS) analysis. The microhardness of the alloy atdifferent annealing temperatures was measured. The results obtained indicate that the microhardnessof the rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr alloy does not vary with different annealingtemperatures. The as-quenched microstructure of the alloy includes two kinds of dispersed primaryphases: Al_3Ti and Al_(13)(Cr, Fe)_2. After annealing at 400 deg C for 10 h, the stable phaseAl_(13)Fe_4 appears in the microstructure. 展开更多
关键词 rapidly solidified Al-Ti-Fe-Cr alloy MICROHARDNESS as-quenchedmicrostructure as-annealed microstructure
下载PDF
SECOND PHASES OF RAPIDLY SOLIDIFIED AlFeCrZrVSi ALLOY AND THEIR THERMAL STABILITIES 被引量:4
7
作者 Xiao Yude Li Songrui Li Wenxian Zeng Zhihua Ma Zhengqing(Department of Materials Science and Engineering,Central South University of Technology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 1998年第1期24-27,共4页
The rapidly solidified powder of AlFeCrZrVSi aluminum alloy was prepared using multistage atomization and consolidated by hotextrusion, the evolution of microstructure of the extruded materials during thermal exposure... The rapidly solidified powder of AlFeCrZrVSi aluminum alloy was prepared using multistage atomization and consolidated by hotextrusion, the evolution of microstructure of the extruded materials during thermal exposure was studied with optical microscope, Xray diffraction and transmission electron microscope(TEM). The results show that the majority of dispersions present in the asextruded alloy are metastable Al12(Fe, Cr, V)3Si, which has excellent thermaldynamical stability and coarsening resistance; the coarsening ratecontrolling process of the Al12(Fe, Cr, V)3Si phase is considered to be diffusion of Fe atom along grain boundaries instead of bulk diffusion of Fe atom. 展开更多
关键词 aluminum ALLOY rapid solidifiCATION THERMAL stability
下载PDF
Experimental Study on Engineering Behavior of Solidified Soil for Scour Repair and Protection
8
作者 WU Xiao-ni LI Ru-yu +5 位作者 SHU Jian TANG Chao CHEN Jin-jian WANG Hui-li JIANG Hai-li WANG Xiao 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期625-635,共11页
A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the deve... A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference. 展开更多
关键词 scour repair and protection solidified soil PUMPABILITY STRENGTH flow properties anti-scour performance
下载PDF
Investigation on stability of directionally solidified CBr4-C2Cl6 lamellar eutectic by using multiphase field simulation 被引量:2
9
作者 朱耀产 王锦程 +1 位作者 杨根仓 赵达文 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第3期805-811,共7页
With the multiphase field method, the stability of lamellar basic state is investigated during the directional solidification of eutectic alloy CBr4-C2Cl6. A great number of lamellar patterns observed in experiments a... With the multiphase field method, the stability of lamellar basic state is investigated during the directional solidification of eutectic alloy CBr4-C2Cl6. A great number of lamellar patterns observed in experiments are simulated, and a stability diagram for lamellar pattern selections is presented. The simulated growth behaviours of these patterns are found to be qualitatively consistent with Karma et al's numerical calculations and experimental results. The formation of the primary instability is attributed to the destabilization of solute boundary layer. 展开更多
关键词 multiphase field directional solidification morphological instability stability diagram
下载PDF
Positron Annihilation Study on the Microstructural Stability in Rapidly Solidified Al_(92.3)Fe_(4.3)V_(0.7)Si_(1.7)Mm_(1.0) Alloy 被引量:1
10
作者 Wei JIA Meikuang Tseng and Jianqiang WANG(Dept. of Material Science, Northeastern University Shenyang 110006, China)Liangyue XIONG and Yelong CHU(International Ceoter for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences,Shenyan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第2期179-181,共3页
Rapidly solidified Al92.3Fe4.3V0.7Si1.7Mm1.0 alloy has been studied by positron lifetime spectroscopy and the variations on the intedecial defects with the annealing temperature were revealed by an analysis of the lif... Rapidly solidified Al92.3Fe4.3V0.7Si1.7Mm1.0 alloy has been studied by positron lifetime spectroscopy and the variations on the intedecial defects with the annealing temperature were revealed by an analysis of the lifetime results. The intedece characteristics derived from the positron-lifetime results could be used to give a satisfactory interpretation of the dependence of mechanical properties on the annealing temperature 展开更多
关键词 FE Positron Annihilation Study on the Microstructural stability in Rapidly solidified Al MM SI
下载PDF
Effect of slow shot speed on externally solidified crystal,porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy
11
作者 Wen-ning Liu Wei Zhang +6 位作者 Peng-yue Wang Yi-xian Liu Xiang-yi Jiao Ao-xiang Wan Cheng-gang Wang Guo-dong Tong Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第1期11-19,共9页
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi... The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%). 展开更多
关键词 hypoeutectic Al-Si alloy high pressure die casting POROSITY externally solidified crystal tensile property
下载PDF
Human islet amyloid polypeptide oligomers stabilized and probed by MAS NMR
12
作者 Ziwei Chang Zhengfeng Zhang 《Magnetic Resonance Letters》 2024年第1期61-62,共2页
The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibri... The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibrils.Moreover,it is widely accepted that oligomers are the most toxic species along the aggregation pathway[1e4].The studies of oligomers are believed to shed light on the molecular mechanism of amyloid fibrillation and probably the medical clues for related diseases.In vitro investigations of amyloid oligomers are challenging due to their transient and polymorphic nature[5].This is particularly evident in the case of human type-2 diabetes-associated islet amyloid polypeptide(hIAPP),which tends to rapidly form polymorphic fibrils within minutes[6].Notably,hIAPP demonstrates a higher propensity for rapid aggregation compared to other amyloid proteins such as a-synuclein[7]. 展开更多
关键词 AGGREGATION OLIGOMER stabilized
下载PDF
Absolute stability of the solidification interface in a laser resolidified Zn-2wt.%Cu hypoperitectic alloy 被引量:1
13
作者 苏云鹏 林鑫 +2 位作者 王猛 薛营 黄卫东 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第7期1631-1637,共7页
This paper reports on laser surface remelting experiments performed on a Zn-2wt.%Cu hypoperitectic alloy by employing a 5kW CW CO2 laser at scanning velocities between 6 and 1207mm/s. The growth velocities of the mi- ... This paper reports on laser surface remelting experiments performed on a Zn-2wt.%Cu hypoperitectic alloy by employing a 5kW CW CO2 laser at scanning velocities between 6 and 1207mm/s. The growth velocities of the mi- crostructures in the laser molten pool were accurately measured. The planar interface structure caused by the high velocity absolute stability was achieved at a growth velocity of 210 mm/s. An implicit expression of the critical solidification velocity for the cellular-planar transition was carried out by nonlinear stability analyses of the planar interface. The results showed a better agreement with the measured critical velocity than that predicted by M-S theory. Cell-free structures were observed throughout the whole molten pool at a scanning velocity of 652 mm/s and the calculated minimum temperature gradient in this molten pool was very close to the critical temperature gradient for high gradient absolute stability (HGAS) of the η phase. This indicates that HGAS was successfully achieved in the present experiments. 展开更多
关键词 rapid solidification absolute stability laser surface resolidification Zn-Cu peritectic alloy
下载PDF
Solidification/Stabilization of Chromium in Red Mud-based Geopolymer
14
作者 田崇霏 LUO Zhongtao +4 位作者 LIU Lei LIU Xiaohai 张美香 陈萌 HAI Ran 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期819-830,共12页
Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,a... Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers. 展开更多
关键词 CHROMIUM solidifiCATION/stabilIZATION GEOPOLYMER red mud DURABILITY
下载PDF
Effect of CO_(2)exposure on the mechanical strength of geopolymerstabilized sandy soils
15
作者 Hamid Reza Razeghi Armin Geranghadr +2 位作者 Fatemeh Safaee Pooria Ghadir Akbar A.Javadi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期670-681,共12页
In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geop... In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate. 展开更多
关键词 Soil stabilization CO_(2)effect GEOPOLYMER
下载PDF
Mechanical behaviors of warm and ice-rich frozen soil stabilized with sulphoaluminate cement
16
作者 WANG Honglei ZHANG Hu +2 位作者 ZHANG Jianming ZHANG Qi YIN Zhenhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期335-345,共11页
The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures an... The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation. 展开更多
关键词 Permafrost regions Frozen soil Mechanical behavior Chemical stabilization Ground improvement Ground modification
下载PDF
Surface-to-bulk engineering with high-valence W^(6+) enabling stabilized single-crystal LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2) cathode
17
作者 Jun-Ke Liu Xue-Rui Yang +6 位作者 Chuan-Wei Wang Zu-Wei Yin Yi-Yang Hu Li Deng Zhen Wang Yao Zhou Jun-Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期67-76,共10页
Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by str... Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by structural instability and slow Li^(+) transfer kinetics.Herein,a surface-to-bulk engineered single-crystal LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(Ni90) cathode,which features W-doped bulk and Li_(2)WO_(4) surface layer,was successfully achieved by a one-step high-valence W^(6+) modification.The as-obtained W-modified Ni90 delivers excellent cycling stability(89.8% capacity retention after 300 cycles at 0.5 C)and rate capability.The enhanced electrochemical performance was ascribed to the doped-W induced stabilized lattice oxygen,reduced Li^(+)/Ni^(2+) mixing and inhibited H2-H3 phase transition in the bulk,and Li_(2)WO_(4) layer generated stabilized cathode/electrolyte interface.In addition,the thinner LiF-rich cathode electrolyte interphase(CEI) on surface and smaller grain size for W-modified Ni90 benefit to its Li^(+) diffusion dynamics.The effect of high-valence W^(6+)on single-crystal Ni-rich cathode was firstly revealed in detail,which deepens the understanding of electrochemical behavior of Ni-rich cathode with high-valence cations modification,and provides clues for design of high-performance layered cathodes. 展开更多
关键词 Single-crystal Ni-rich cathode Surface-to-bulk engineering High-valence cations Structural stability Interfacial side reaction
下载PDF
A universal multifunctional dual cation doping strategy towards stabilized ultra-high nickel cobalt-free lithium layered oxide cathode
18
作者 Yabin Shen Dongming Yin +2 位作者 Limin Wang Gang Huang Yong Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期296-305,I0007,共11页
Ultra-high nickel cobalt-free lithium layered oxides are promising cathode material for lithium-ion batteries(LIBs)because of their relatively high capacity and low cost.Nevertheless,the high nickel content would indu... Ultra-high nickel cobalt-free lithium layered oxides are promising cathode material for lithium-ion batteries(LIBs)because of their relatively high capacity and low cost.Nevertheless,the high nickel content would induce bulk structure degradation and interfacial environment deterioration,and the absence of Co element reduces the lithium diffusion kinetics,severely limiting the performance liberation of this kind of cathodes.Herein,a multifunctional Ti/Zr dual cation co-doping strategy has been employed to improve the lithium storage performance of LiNi_(0.9)Mn_(0.1)O_(2)(NM91)cathode.On the one hand,the Ti/Zr co-doping weakens the Li^(+)/Ni^(2+)mixing through magnetic interactions due to the inexistence of unpaired electrons for Ti^(4+)and Zr^(4+),increasing the lithium diffusion rate and suppressing the harmful coexistence of H1 and H2 phases.On the other hand,they enhance the lattice oxygen stability because of the strong Ti-O and Zr-O bonds,inhibiting the undesired H3 phase transition and lattice oxygen loss,improving the bulk structure and cathode-electrolyte interface stability.As a result,the Ti/Zr co-doped NM91(NMTZ)exhibits a 91.2%capacity retention rate after 100 cycles,while that of NM91 is only82.9%.Also,the NMTZ displays better rate performance than NM91 with output capacities of 115 and93 mA h g^(-1)at a high current density of 5 C,respectively.Moreover,the designed NMTZ could enable the full battery to deliver an energy density up to 263 W h kg^(-1),making the ultra-high nickel cobaltfree lithium layered oxide cathode closer to practical applications. 展开更多
关键词 Lithium-ion battery Ultra-high nickel cobalt-free cathode Ti/Zr co-doping Li^(+)/Ni^(2+)mixing Lattice oxygen stability
下载PDF
THE STABILITY OF SOLID-LIQUID INTERFACE OF UNIDIRECTIONAL SOLIDIFIED Fe-C EUTECTIC ALLOY
19
作者 蒋建清 《Journal of Southeast University(English Edition)》 EI CAS 1994年第1期65-71,共7页
THESTABILITYOFSOLID-LIQUIDINTERFACEOFUNIDIRECTIONALSOLIDIFIEDFe-CEUTECTICALLOYJiangJianqing(蒋建清)(Departmento... THESTABILITYOFSOLID-LIQUIDINTERFACEOFUNIDIRECTIONALSOLIDIFIEDFe-CEUTECTICALLOYJiangJianqing(蒋建清)(DepartmentofMaterialSciencea... 展开更多
关键词 EUTECTIC growth stabilITY criteria branching-stability of solid-liquidinterface
下载PDF
Nanoparticle stabilized emulsion with surface solidification for profile control in porous media
20
作者 Yi-Ning Wu Xiang Yan +5 位作者 Ke Xu Ruo-Yu Wang Meng-Jiao Cao Xiao-Da Wang Yuan Li Cai-Li Dai 《Petroleum Science》 SCIE CAS CSCD 2022年第2期800-808,共9页
Profile control is utilized to redirect the injection water to low permeability region where a large amount of crude oil lies.Performed gel particles are the commonly used agent for redistributing water by blocking th... Profile control is utilized to redirect the injection water to low permeability region where a large amount of crude oil lies.Performed gel particles are the commonly used agent for redistributing water by blocking the pores in high permeability region.But the capability of deep penetration of performed gel particles is poor.Here,we formulate nanoparticle stabilized emulsion(NSE).The stability and the effect of NSE on the fluid redirection in a three-dimensional porous medium were investigated.By usingμ-PIV(particle image velocimetry),it was found that the velocity gradient of continuous fluid close to the nanoparticle stabilized droplets is much higher than that close to surfactant stabilized droplets.NSE behaves as solid particle in preferential seepage channels,which will decrease effectively the permeability,thereby redirecting the subsequent injection water.Furthermore,NSE shows high stability compared with emulsion stabilized by surfactant in static and dynamic tests.In addition,water flooding tests also confirm that the NSE can significantly reduce the permeability of porous media and redirect the fluid flow.Our results demonstrate NSE owns high potential to act as profile control agent in deep formation. 展开更多
关键词 Nanoparticles Emulsion stability Flow behavior COALESCENCE Profile control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部