The effect of stabilizing elements, such as Nb and Ti, on the microstructure and properties of low carbon ferritic stainless steel (FSS) has been investigated. The results of the Thermo-calc simulation have shown th...The effect of stabilizing elements, such as Nb and Ti, on the microstructure and properties of low carbon ferritic stainless steel (FSS) has been investigated. The results of the Thermo-calc simulation have shown that the interstitial elements, such as C and N, may be completely stabilized by the addition of Nb and Ti. With the increase of Nb and Ti contents ,the α + γ two phases gradually transfer to a single α-phase under a high temperature condition ,and the content of the carbide M23 C6 gradually decreases. The microstructure has indicated that the combined addition of Nb and Ti can promote the recrystallization of the band structure and form more uniform equiaxed grains. Also, with the increase of Nb and Ti contents,the elongation, the r-value and the corrosion resistance of cold-rolled and annealed sheets are improved prominently. In comparison with the effect of Ti ,the addition of Nb is more beneficial to the increase of r-value and the corrosion resistance.展开更多
Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element m...Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.展开更多
In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies....In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results.展开更多
In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow ra...In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow rate indicates an unstable discharge. The flow regions of the unstable discharge were compared with that of the stable discharge, a key transformation zone, where the voidage showed the largest difference between unstable and stable discharge, was revealed. To identify the relevance of the key transformation zone and the hopper flow stability, the voidage variation of the key transformation zone with material height reducing was studied.A sharp increase in the voidage in the key transformation zone was considered to be the standard for judging the unstable hopper flow, and the ‘Top–Bottom effect' of the hopper was defined, which indicated the hopper flow was unstable when the hopper only had the top area and the bottom area, because the voidage of particles in the top area and the bottom area were both variables.展开更多
In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also...In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also provide the theoretical analysis of the existence, uniqueness, stability, and convergence of the stabilized MFE solutions for the stabilized MFE formulation.展开更多
A time semi-discrete Crank-Nicolson (CN) formulation with second-order time accuracy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed ...A time semi-discrete Crank-Nicolson (CN) formulation with second-order time accuracy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed finite volume element (SCNMFVE) formu- lation based on two local Gaussian integrals and parameter-free with the second-order time accuracy is established directly from the time semi-discrete CN formulation so that it could avoid the discussion for semi-discrete SCNMFVE formulation with respect to spatial wriables and its theoretical analysis becomes very simple. Finally, the error estimates of SCNMFVE solutions are provided.展开更多
The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these e...The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these elements in Fe3AI are in agreement with the experimental observations.The calculated Iocal magnetic moment of Fe3AI is identical to the experimentaI. ln addition, itis found that the D03 phase stability of Fe3AI doped with Ti, V, Co and Cr depends on 'energygap- of energy band near Fermi level. while the D03 phase stability of Fe3AI doped with Ta, Wand Mo may be affected by Madelung energy.展开更多
The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism...The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.展开更多
Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and ant...Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.展开更多
In the present paper, the relations between the microstructure and the properties of Ti-14Al-21Nb and Ti-14Al-20Nb-3.5V-2Mo alloys at different temperatures and different cooling rates of heat treatment were re-vealed...In the present paper, the relations between the microstructure and the properties of Ti-14Al-21Nb and Ti-14Al-20Nb-3.5V-2Mo alloys at different temperatures and different cooling rates of heat treatment were re-vealed by X-ray , optical microscope , HVTEM , auto-graphical-analyser and mechanical properties test at roomand high temperature. The experimental results show as follows: at 1040~1120℃ 14h WQ, the microstruc-ture of Ti-14Al-21Nb bar is primary phaseα_2+B2. With temperature increasing, the primary α_2 phase de-crease and the mechanical properties ultimate tensile strength (UTS), yield strength (YS) and elongation(EL) at room temperature increase. When it has reduced the α_2 phase by 50% (at 1080℃/4h WQ) , the me-chanical properties at room temperature are excellent , EL being 10. 5%. Following the α_2 phase reduces contin-uously , UTS, YS are going up, but EL is going down. After heated at two phases range and cooled down tothe room temperature with furnace, the microstructure of Ti-14Al-20Nb-3.5V-2Mo alloy is the equiaxed α_2+needle-like α_2+βphase. The mechanical properties at room temperature and 700℃ are fairly good.展开更多
Using first-principles density functional calculations, lattice stability of γ-Ni under [001], [110], and [111] uniaxial tensions and the effect of alloying elements Co and Re on the uniaxial tensile behavior of γ-N...Using first-principles density functional calculations, lattice stability of γ-Ni under [001], [110], and [111] uniaxial tensions and the effect of alloying elements Co and Re on the uniaxial tensile behavior of γ-Ni were studied in this paper.With elastic constants and phonon spectra calculations, we examined the mechanical stability and phonon stability of Ni during the uniaxial tensions along the three characteristic directions. The results show that the mechanical stability and phonon stability of a lattice occurs before the maximum stress–strain point under the [001] and [111] tension, respectively.The effects of Co and Re on the ideal tensile strength of γ-Ni show a significant directivity: Co and Re have little effect on the stresses in [001] and [111] directions, but increases the ideal strength of the system in the weakest uniaxial tensile direction. Moreover, the strengthening effect of Re is significantly better than that of Co. By further analyzing electronic structure, it is found that the effect of alloying elements on the uniaxial tensile behavior of γ-Ni comes from their interactions with host atoms.展开更多
The residual effect of tobacco biochar(TB≥500°C)mono and co-application with Cahydroxide(CH),Ca-bentonite(CB)and natural zeolite(NZ)on the bio-availability of trace elements TE(s)in alkaline soils has not been d...The residual effect of tobacco biochar(TB≥500°C)mono and co-application with Cahydroxide(CH),Ca-bentonite(CB)and natural zeolite(NZ)on the bio-availability of trace elements TE(s)in alkaline soils has not been deeply studied yet.A pot study that had earlier been investigated TB mono and blended with CH,CB and NZ on the immobilization of Pb,Cu Cd,and Zn by Chinese cabbage.Maize crop in the rotation was selected as test plant to assess the residual impact of amendments on stabilization of Pb,Cu Cd,and Zn in mine polluted(M-P),smelter heavily and low polluted(S-HP and S-LP,respectively)soils.The obtained results showed that stabilization of Pb,Cd,Cu and Zn reached 63.84% with TB+CB,61.19% with TB+CH,83.31% with TB+CH and 35.27% with TB+CH for M-P soil,36.46% with TB+NZ,38.46% with TB+NZ,19.40% with TB+CH and 62.43% with TB+CH for S-LP soil,52.94%TB+NZ,57.65% with TB+NZ,52.94% with TB+NZ,and 28.44% with TB+CH for S-LP soil.Conversely,TB+CH and TB alone had mobilized Pb and Zn up to19.29% and 34.96% in M-P soil.The mobility of Zn reached 8.38% with TB+CB and 66.03% with TB for S-HP and S-LP soils.The uptake and accumulation of Pb,Cd,Cu and Zn in shoot and root were reduced in three polluted soils.Overall,the combination of TB along with CH,CB and NZ has been proven to be effective in Pb,Cd,Cu and Zn polluted mine/smelter soils restoration.展开更多
Based on the low-order conforming finite element subspace (Vh, Mh) such as the P1-P0 triangle element or the Q1-P0 quadrilateral element, the locally stabilized finite element method for the Stokes problem with nonl...Based on the low-order conforming finite element subspace (Vh, Mh) such as the P1-P0 triangle element or the Q1-P0 quadrilateral element, the locally stabilized finite element method for the Stokes problem with nonlinear slip boundary conditions is investigated in this paper. For this class of nonlinear slip boundary conditions including the subdifferential property, the weak variational formulation associated with the Stokes problem is an variational inequality. Since (Vh, Mh) does not satisfy the discrete inf-sup conditions, a macroelement condition is introduced for constructing the locally stabilized formulation such that the stability of (Vh, Mh) is established. Under these conditions, we obtain the H1 and L2 error estimates for the numerical solutions.展开更多
In the paper,an inf-sup stabilized finite element method by multiscale functions for the Stokes equations is discussed.The key idea is to use a PetrovGalerkin approach based on the enrichment of the standard polynomi...In the paper,an inf-sup stabilized finite element method by multiscale functions for the Stokes equations is discussed.The key idea is to use a PetrovGalerkin approach based on the enrichment of the standard polynomial space for the velocity component with multiscale functions.The inf-sup condition for P_(1)-P_(0)triangular element(or Q_(1)-P_(0)quadrilateral element)is established.The optimal error estimates of the stabilized finite element method for the Stokes equations are obtained.展开更多
For the low-order finite element pair P1P1,based on full domain partition technique,a parallel pressure projection stabilized finite element algorithm for the Stokes equation with nonlinear slip boundary con...For the low-order finite element pair P1P1,based on full domain partition technique,a parallel pressure projection stabilized finite element algorithm for the Stokes equation with nonlinear slip boundary conditions is designed and analyzed.From the definition of the subdifferential,the variational formulation of this equation is the variational inequality problem of the second kind.Each subproblem is a global problem on the composite grid,which is easy to program and implement.The optimal error estimates of the approximate solutions are obtained by theoretical analysis since the appropriate stabilization parameter is chosen.Finally,some numerical results are given to demonstrate the hight efficiency of the parallel stabilized finite element algorithm.展开更多
In this paper,a stabilized finite element technique,actualized by streamline upwind Petrov-Galerkin(SUPG) stabilized method and three-step finite element method(FEM),for large eddy simulation(LES) is developed to pred...In this paper,a stabilized finite element technique,actualized by streamline upwind Petrov-Galerkin(SUPG) stabilized method and three-step finite element method(FEM),for large eddy simulation(LES) is developed to predict the wind flow with high Reynolds numbers.Weak form of LES motion equation is combined with the SUPG stabilized term for the spatial finite element discretization.An explicit three-step scheme is implemented for the temporal discretization.For the numerical example of 2D wind flow over a square rib at Re=4.2×105,the Smagorinsky's subgrid-scale(SSGS) model,the DSGS model,and the DSGS model with Cabot near-wall model are applied,and their results are analyzed and compared with experimental results.Furthermore,numerical examples of 3D wind flow around a surface-mounted cube with different Reynolds numbers are performed using DSGS model with Cabot near-wall model based on the present stabilized method to study the wind field and compared with experimental and numerical results.Finally,vortex structures for wind flow around a surface-mounted cube are studied by present numerical method.Stable and satisfactory results are obtained,which are consistent with most of the measurements even under coarse mesh.展开更多
This paper is devoted to the establishment of sharper a priori stability and error estimates of a stabilized finite element method proposed by Barrenechea and Valentin for solving the generalized Stokes problem,which ...This paper is devoted to the establishment of sharper a priori stability and error estimates of a stabilized finite element method proposed by Barrenechea and Valentin for solving the generalized Stokes problem,which involves a viscosity v and a reaction consta nt a.With the establishmen t of sharper st ability estimates and the help of ad hoc finite element projections,we can explicitly establish the dependence of error bounds of velocity and pressure on the viscosity z/,the reaction constant cr,and the mesh size h.Our analysis reveals that the viscosity y and the reaction constant a respectively act in the numerator position and the denominator position in the error estimates of velocity and pressure in standard norms without any weights.Consequently,the stabilization method is indeed suitable for the generalized Stokes problem with a small viscosity u and a large reaction constant a.The sharper error estimates agree very well with the numerical results.展开更多
Two-grid mixed finite element method is proposed based on backward guler schemes for the unsteady reaction-diffusion equations. The scheme combines with the stabilized mixed finite element scheme by using the lowest e...Two-grid mixed finite element method is proposed based on backward guler schemes for the unsteady reaction-diffusion equations. The scheme combines with the stabilized mixed finite element scheme by using the lowest equal-order pairs for the velocity and pressure. The space twogrid method is also used to reduce the time consuming. The benefits of this approach are to avoid the higher derivative, but to have more favorable stability, and to get the numerical solution of the two unknown variables simultaneously. Stability analysis and error estimates are given in this work. Finally, the theoretical results are verified by the numerical examples.展开更多
A stabilized finite element algorithm potential for wind-structure interaction(WSI) problem is presented in this paper. Streamline upwind Petrov-Galerkin(SUPG) scheme of the large eddy simulation(LES) of dynamic sub-g...A stabilized finite element algorithm potential for wind-structure interaction(WSI) problem is presented in this paper. Streamline upwind Petrov-Galerkin(SUPG) scheme of the large eddy simulation(LES) of dynamic sub-grid scale(DSGS) is developed under the framework of arbitrary Lagrangian-Eulerian(ALE) description to solve the governing equations. High stabilization is achieved by a three-step technique in the temporal discretization. On the other hand, the partitioned procedure is employed for the consideration of the coupled WSI problem. Newmark integral method is introduced for the computation of structure domain, while spring analogy method is used for the grid update of the mesh domain. The developed computational codes are applied to the analysis of wind-induced effect of a spatial latticed structure. The numerical predictions of the three-dimensional wind flow features, the wind pressures and the wind-induced effect of spatial structures are given. Comparisons are made between the effects of rigid structure in view of the WSI.展开更多
In this study, a time semi-discrete Crank-Nicolson (CN) formulation with second-order time accu- racy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete sta...In this study, a time semi-discrete Crank-Nicolson (CN) formulation with second-order time accu- racy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed finite element (SCNMFE) formulation based on two local Gauss integrals and parameter- free with the second-order time accuracy is established directly from the time semi-discrete CN formulation. Thus, it could avoid the discussion for semi-discrete SCNMFE formulation with respect to spatial variables and its theoretical analysis becomes very simple. Finaly, the error estimates of SCNMFE solutions are provided.展开更多
基金funded by the CITIC-CBMM R & D Subject Foundation(2010-D046).
文摘The effect of stabilizing elements, such as Nb and Ti, on the microstructure and properties of low carbon ferritic stainless steel (FSS) has been investigated. The results of the Thermo-calc simulation have shown that the interstitial elements, such as C and N, may be completely stabilized by the addition of Nb and Ti. With the increase of Nb and Ti contents ,the α + γ two phases gradually transfer to a single α-phase under a high temperature condition ,and the content of the carbide M23 C6 gradually decreases. The microstructure has indicated that the combined addition of Nb and Ti can promote the recrystallization of the band structure and form more uniform equiaxed grains. Also, with the increase of Nb and Ti contents,the elongation, the r-value and the corrosion resistance of cold-rolled and annealed sheets are improved prominently. In comparison with the effect of Ti ,the addition of Nb is more beneficial to the increase of r-value and the corrosion resistance.
文摘Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.
文摘In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results.
基金Supported by the State Key Development Program for Basic Research of China(2015CB251402)the National Natural Science Foundation of China(21325628,91334108)the Mole-8.5 Supercomputing System developed by Institute of Process Engineering,Chinese Academy of Sciences
文摘In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow rate indicates an unstable discharge. The flow regions of the unstable discharge were compared with that of the stable discharge, a key transformation zone, where the voidage showed the largest difference between unstable and stable discharge, was revealed. To identify the relevance of the key transformation zone and the hopper flow stability, the voidage variation of the key transformation zone with material height reducing was studied.A sharp increase in the voidage in the key transformation zone was considered to be the standard for judging the unstable hopper flow, and the ‘Top–Bottom effect' of the hopper was defined, which indicated the hopper flow was unstable when the hopper only had the top area and the bottom area, because the voidage of particles in the top area and the bottom area were both variables.
基金supported by the National Science Foundation of China(11271127)Science Research Project of Guizhou Province Education Department(QJHKYZ[2013]207)
文摘In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also provide the theoretical analysis of the existence, uniqueness, stability, and convergence of the stabilized MFE solutions for the stabilized MFE formulation.
基金supported by National Science Foundation of China(11271127)Science Research Project of Guizhou Province Education Department(QJHKYZ[2013]207)
文摘A time semi-discrete Crank-Nicolson (CN) formulation with second-order time accuracy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed finite volume element (SCNMFVE) formu- lation based on two local Gaussian integrals and parameter-free with the second-order time accuracy is established directly from the time semi-discrete CN formulation so that it could avoid the discussion for semi-discrete SCNMFVE formulation with respect to spatial wriables and its theoretical analysis becomes very simple. Finally, the error estimates of SCNMFVE solutions are provided.
文摘The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these elements in Fe3AI are in agreement with the experimental observations.The calculated Iocal magnetic moment of Fe3AI is identical to the experimentaI. ln addition, itis found that the D03 phase stability of Fe3AI doped with Ti, V, Co and Cr depends on 'energygap- of energy band near Fermi level. while the D03 phase stability of Fe3AI doped with Ta, Wand Mo may be affected by Madelung energy.
基金Item Sponsored by National Natural Science Foundation of China Baoshan Iron and Steel Co Ltd(50534010)
文摘The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.
文摘Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.
文摘In the present paper, the relations between the microstructure and the properties of Ti-14Al-21Nb and Ti-14Al-20Nb-3.5V-2Mo alloys at different temperatures and different cooling rates of heat treatment were re-vealed by X-ray , optical microscope , HVTEM , auto-graphical-analyser and mechanical properties test at roomand high temperature. The experimental results show as follows: at 1040~1120℃ 14h WQ, the microstruc-ture of Ti-14Al-21Nb bar is primary phaseα_2+B2. With temperature increasing, the primary α_2 phase de-crease and the mechanical properties ultimate tensile strength (UTS), yield strength (YS) and elongation(EL) at room temperature increase. When it has reduced the α_2 phase by 50% (at 1080℃/4h WQ) , the me-chanical properties at room temperature are excellent , EL being 10. 5%. Following the α_2 phase reduces contin-uously , UTS, YS are going up, but EL is going down. After heated at two phases range and cooled down tothe room temperature with furnace, the microstructure of Ti-14Al-20Nb-3.5V-2Mo alloy is the equiaxed α_2+needle-like α_2+βphase. The mechanical properties at room temperature and 700℃ are fairly good.
基金Project supported by Beijing Municipality Science and Technology Commission,China(Grant No.D161100002416001)the National Key R&D Program of China(Grant No.2017YFB0701502)
文摘Using first-principles density functional calculations, lattice stability of γ-Ni under [001], [110], and [111] uniaxial tensions and the effect of alloying elements Co and Re on the uniaxial tensile behavior of γ-Ni were studied in this paper.With elastic constants and phonon spectra calculations, we examined the mechanical stability and phonon stability of Ni during the uniaxial tensions along the three characteristic directions. The results show that the mechanical stability and phonon stability of a lattice occurs before the maximum stress–strain point under the [001] and [111] tension, respectively.The effects of Co and Re on the ideal tensile strength of γ-Ni show a significant directivity: Co and Re have little effect on the stresses in [001] and [111] directions, but increases the ideal strength of the system in the weakest uniaxial tensile direction. Moreover, the strengthening effect of Re is significantly better than that of Co. By further analyzing electronic structure, it is found that the effect of alloying elements on the uniaxial tensile behavior of γ-Ni comes from their interactions with host atoms.
基金supported by the China Fundamental Research Funds for the Central Universities(No.Z109021565)the Science and Technology Overall Innovation Project of Shaanxi Province in China(No.2016KTCQ03-20)
文摘The residual effect of tobacco biochar(TB≥500°C)mono and co-application with Cahydroxide(CH),Ca-bentonite(CB)and natural zeolite(NZ)on the bio-availability of trace elements TE(s)in alkaline soils has not been deeply studied yet.A pot study that had earlier been investigated TB mono and blended with CH,CB and NZ on the immobilization of Pb,Cu Cd,and Zn by Chinese cabbage.Maize crop in the rotation was selected as test plant to assess the residual impact of amendments on stabilization of Pb,Cu Cd,and Zn in mine polluted(M-P),smelter heavily and low polluted(S-HP and S-LP,respectively)soils.The obtained results showed that stabilization of Pb,Cd,Cu and Zn reached 63.84% with TB+CB,61.19% with TB+CH,83.31% with TB+CH and 35.27% with TB+CH for M-P soil,36.46% with TB+NZ,38.46% with TB+NZ,19.40% with TB+CH and 62.43% with TB+CH for S-LP soil,52.94%TB+NZ,57.65% with TB+NZ,52.94% with TB+NZ,and 28.44% with TB+CH for S-LP soil.Conversely,TB+CH and TB alone had mobilized Pb and Zn up to19.29% and 34.96% in M-P soil.The mobility of Zn reached 8.38% with TB+CB and 66.03% with TB for S-HP and S-LP soils.The uptake and accumulation of Pb,Cd,Cu and Zn in shoot and root were reduced in three polluted soils.Overall,the combination of TB along with CH,CB and NZ has been proven to be effective in Pb,Cd,Cu and Zn polluted mine/smelter soils restoration.
基金supported by the National Natural Science Foundation of China(10901122)Zhejiang Provincial Natural Science Foundation (Y6090108)supported by the National Natural Science Foundation of China(10971165)
文摘Based on the low-order conforming finite element subspace (Vh, Mh) such as the P1-P0 triangle element or the Q1-P0 quadrilateral element, the locally stabilized finite element method for the Stokes problem with nonlinear slip boundary conditions is investigated in this paper. For this class of nonlinear slip boundary conditions including the subdifferential property, the weak variational formulation associated with the Stokes problem is an variational inequality. Since (Vh, Mh) does not satisfy the discrete inf-sup conditions, a macroelement condition is introduced for constructing the locally stabilized formulation such that the stability of (Vh, Mh) is established. Under these conditions, we obtain the H1 and L2 error estimates for the numerical solutions.
基金the support of the Natural Science Foundation of China(No.10671154)the National Basic Research Program(No.2005CB321703)。
文摘In the paper,an inf-sup stabilized finite element method by multiscale functions for the Stokes equations is discussed.The key idea is to use a PetrovGalerkin approach based on the enrichment of the standard polynomial space for the velocity component with multiscale functions.The inf-sup condition for P_(1)-P_(0)triangular element(or Q_(1)-P_(0)quadrilateral element)is established.The optimal error estimates of the stabilized finite element method for the Stokes equations are obtained.
基金supported by the Natural Science Foundation of China(No.11361016)the Basic and Frontier Explore Program of Chongqing Municipality,China(No.cstc2018jcyjAX0305)Funds for the Central Universities(No.XDJK2018B032).
文摘For the low-order finite element pair P1P1,based on full domain partition technique,a parallel pressure projection stabilized finite element algorithm for the Stokes equation with nonlinear slip boundary conditions is designed and analyzed.From the definition of the subdifferential,the variational formulation of this equation is the variational inequality problem of the second kind.Each subproblem is a global problem on the composite grid,which is easy to program and implement.The optimal error estimates of the approximate solutions are obtained by theoretical analysis since the appropriate stabilization parameter is chosen.Finally,some numerical results are given to demonstrate the hight efficiency of the parallel stabilized finite element algorithm.
基金Project supported by the National Natural Science Foundation of China(No.51078230)the Research Fund for the Doctoral Program of Higher Education of China(No.200802480056)the Key Project of Fund of Science and Technology Development of Shanghai(No.10JC1407900),China
文摘In this paper,a stabilized finite element technique,actualized by streamline upwind Petrov-Galerkin(SUPG) stabilized method and three-step finite element method(FEM),for large eddy simulation(LES) is developed to predict the wind flow with high Reynolds numbers.Weak form of LES motion equation is combined with the SUPG stabilized term for the spatial finite element discretization.An explicit three-step scheme is implemented for the temporal discretization.For the numerical example of 2D wind flow over a square rib at Re=4.2×105,the Smagorinsky's subgrid-scale(SSGS) model,the DSGS model,and the DSGS model with Cabot near-wall model are applied,and their results are analyzed and compared with experimental results.Furthermore,numerical examples of 3D wind flow around a surface-mounted cube with different Reynolds numbers are performed using DSGS model with Cabot near-wall model based on the present stabilized method to study the wind field and compared with experimental and numerical results.Finally,vortex structures for wind flow around a surface-mounted cube are studied by present numerical method.Stable and satisfactory results are obtained,which are consistent with most of the measurements even under coarse mesh.
基金The work of H.Y.Duan was supported by the National Natural Science Foundation of China under grants 11971366,11571266,11661161017,1117116&11071132the Collaborative Innovation Centre of Mat hematics,and the Hubei Key Laboratory of Computational Science(Wuhan University,the Natural Science Foundation of Hubei Province No.2019CFA007).
文摘This paper is devoted to the establishment of sharper a priori stability and error estimates of a stabilized finite element method proposed by Barrenechea and Valentin for solving the generalized Stokes problem,which involves a viscosity v and a reaction consta nt a.With the establishmen t of sharper st ability estimates and the help of ad hoc finite element projections,we can explicitly establish the dependence of error bounds of velocity and pressure on the viscosity z/,the reaction constant cr,and the mesh size h.Our analysis reveals that the viscosity y and the reaction constant a respectively act in the numerator position and the denominator position in the error estimates of velocity and pressure in standard norms without any weights.Consequently,the stabilization method is indeed suitable for the generalized Stokes problem with a small viscosity u and a large reaction constant a.The sharper error estimates agree very well with the numerical results.
基金Acknowledgements This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11401422, 11172194), the Provincial Soft Science Foundation of Shaanxi Province (No. 2014041007), and Provincial Science Foundation of Shanxi (Nos. 2014011005, 2015011001).
文摘Two-grid mixed finite element method is proposed based on backward guler schemes for the unsteady reaction-diffusion equations. The scheme combines with the stabilized mixed finite element scheme by using the lowest equal-order pairs for the velocity and pressure. The space twogrid method is also used to reduce the time consuming. The benefits of this approach are to avoid the higher derivative, but to have more favorable stability, and to get the numerical solution of the two unknown variables simultaneously. Stability analysis and error estimates are given in this work. Finally, the theoretical results are verified by the numerical examples.
基金the National Natural Science Foundation of China(Nos.11172174 and 51278297)the Research Program of Shanghai Leader Talent(No.20)the Doctoral Disciplinary Special Research Project of Chinese Ministry of Education(No.20130073110096)
文摘A stabilized finite element algorithm potential for wind-structure interaction(WSI) problem is presented in this paper. Streamline upwind Petrov-Galerkin(SUPG) scheme of the large eddy simulation(LES) of dynamic sub-grid scale(DSGS) is developed under the framework of arbitrary Lagrangian-Eulerian(ALE) description to solve the governing equations. High stabilization is achieved by a three-step technique in the temporal discretization. On the other hand, the partitioned procedure is employed for the consideration of the coupled WSI problem. Newmark integral method is introduced for the computation of structure domain, while spring analogy method is used for the grid update of the mesh domain. The developed computational codes are applied to the analysis of wind-induced effect of a spatial latticed structure. The numerical predictions of the three-dimensional wind flow features, the wind pressures and the wind-induced effect of spatial structures are given. Comparisons are made between the effects of rigid structure in view of the WSI.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11671106the cultivation fund of the National Natural and Social Science Foundations in BTBU under Grant No.LKJJ2016-22
文摘In this study, a time semi-discrete Crank-Nicolson (CN) formulation with second-order time accu- racy for the non-stationary parabolized Navier-Stokes equations is firstly established. And then, a fully discrete stabilized CN mixed finite element (SCNMFE) formulation based on two local Gauss integrals and parameter- free with the second-order time accuracy is established directly from the time semi-discrete CN formulation. Thus, it could avoid the discussion for semi-discrete SCNMFE formulation with respect to spatial variables and its theoretical analysis becomes very simple. Finaly, the error estimates of SCNMFE solutions are provided.