期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Centrifuge modeling of unreinforced and multi-row stabilizing piles reinforced landslides subjected to reservoir water level fluctuation
1
作者 Chenyang Zhang Yueping Yin +3 位作者 Hui Yan Sainan Zhu Ming Zhang Luqi Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1600-1614,共15页
With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides... With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides in China.In this study,two centrifuge model tests were carried out to study the unreinforced and MRSP-reinforced slopes subjected to reservoir water level(RWL)operation,using the Taping landslide as a prototype.The results indicate that the RWL rising can provide lateral support within the submerged zone and then produce the inward seepage force,eventually strengthening the slope stability.However,a rapid RWL drawdown may induce outward seepage forces and a sudden debuttressing effect,consequently reducing the effective soil normal stress and triggering partial pre-failure within the RWL fluctuation zone.Furthermore,partial deformation and subsequent soil structure damage generate excess pore water pressures,ultimately leading to the overall failure of the reservoir landslide.This study also reveals that a rapid increase in the downslope driving force due to RWL drawdown significantly intensifies the lateral earth pressures exerted on the MRSPs.Conversely,the MRSPs possess a considerable reinforcement effect on the reservoir landslide,transforming the overall failure into a partial deformation and failure situated above and in front of the MRSPs.The mechanical transfer behavior observed in the MRSPs demonstrates a progressive alteration in relation to RWL fluctuations.As the RWL rises,the mechanical states among MRSPs exhibit a growing imbalance.The shear force transfer factor(i.e.the ratio of shear forces on pile of the n th row to that of the first row)increases significantly with the RWL drawdown.This indicates that the mechanical states among MRSPs tend toward an enhanced equilibrium.The insights gained from this study contribute to a more comprehensive understanding of the failure mechanisms of reservoir landslides and the mechanical behavior of MRSPs in reservoir banks. 展开更多
关键词 Reservoir landslide Failure mechanism Multi-row stabilizing piles Mechanical behavior
下载PDF
Improved plane layout of stabilizing piles based on the piecewise function expression of the irregular driving force 被引量:3
2
作者 LIU Wen-qiang LI Qun +3 位作者 LU Jian LI Chang-dong YAO Wen-min ZENG Jiang-bo 《Journal of Mountain Science》 SCIE CSCD 2018年第4期871-881,共11页
The paper presents an improved plane layout for stabilizing piles based on a proposed piecewise function expression for the irregular driving force. Based on the specific morphological characteristics of a highway lan... The paper presents an improved plane layout for stabilizing piles based on a proposed piecewise function expression for the irregular driving force. Based on the specific morphological characteristics of a highway landslide, the piecewise function is used to calculate the irregular driving force by dividing the landslide into several sub-areas.Furthermore, the reasonable layout range and pile spacing can be obtained based on the piecewise function expression of the irregular driving force and on relevant research results of the plane layout for stabilizing piles. Therefore, an improved plane layout of stabilizing piles is presented in consideration of a piecewise function expression of the irregular driving force. A highway landslide located in eastern Guizhou Province, China, is analyzed as a case study using the proposed method. The results demonstrate that the theory presented in this paper provides improved economic benefits and can reduce the requirednumber of stabilizing piles by 28.6% compared with the conventional plane layout scheme. 展开更多
关键词 Highway landslide Driving force Piecewise function stabilizing pile Plane layout
下载PDF
Limit analysis method for active earth pressure on laggings between stabilizing piles 被引量:2
3
作者 WANG Ming-min WU Shu-guang WANG Gui-lin 《Journal of Mountain Science》 SCIE CSCD 2017年第1期196-204,共9页
Stabilizing pile is a kind of earth shoring structure frequently used in slope engineering. When the piles have cantilever segments above the ground,laggings are usually installed to avoid collapse of soil between pil... Stabilizing pile is a kind of earth shoring structure frequently used in slope engineering. When the piles have cantilever segments above the ground,laggings are usually installed to avoid collapse of soil between piles. Evaluating the earth pressure acting on laggings is of great importance in design process.Since laggings are usually less stiff than piles,the lateral pressure on lagging is much closer to active earth pressure. In order to estimate the lateral earth pressure on lagging more accurately,first,a model test of cantilever stabilizing pile and lagging systems was carried out. Then,basing the experimental results a three-dimensional sliding wedge model was established. Last,the calculation process of the total active force on lagging is presented based on the kinematic approach of limit analysis. A comparison is made between the total active force on lagging calculated by the formula presented in this study and the force on a same-size rigid retaining wall obtained from Rankine's theory. It is found that the proposed method fits well with the experimental results.Parametric studies show that the total active force on lagging increases with the growth of the lagging height and the lagging clear span; while decreases asthe soil internal friction angle and soil cohesion increase. 展开更多
关键词 stabilizing pile Lagging Active earth pressure Limit analysis method Sliding surface
下载PDF
Bending behavior of double-row stabilizing piles with constructional time delay 被引量:11
4
作者 Yang YU Yue-quan SHANG Hong-yue SUN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第8期596-609,共14页
The bending behavior of double-row stabilizing plies is associated with the constructional time delay(CTD),which can be defined as the time interval between the installations of the front stabilizing pile and the rear... The bending behavior of double-row stabilizing plies is associated with the constructional time delay(CTD),which can be defined as the time interval between the installations of the front stabilizing pile and the rear stabilizing pile.This paper investigates the effect of CTD on the bending moments of double-row stabilizing piles and a method for determining the optimal CTD is proposed.The stabilizing pile is modeled as a cantilever pile embedded in the Winkler elastic foundation.A triangular distributed earth pressure is assumed on the pile segment in the sliding layer.The front stabilizing pile and the rear stabilizing pile are connected by a beam with pinned joints.The analytical solutions of bending moments on the front and the rear stabilizing piles are derived and the accuracy of bending moment solutions is validated by comparing the tensile strain measured from the Hongyan landslide project,Taizhou,Zhejiang,China.It is concluded that CTD has a significant influence on the bending moments of double-row stabilizing piles.An optimal CTD can be obtained when the maximum tensile stress in the front stabilizing pile is equal to that in the rear stabilizing pile,which is 1.4 months for the Hongyan landslide project. 展开更多
关键词 Subgrade reaction LANDSLIDE stabilizing pile Constructional time delay (CTD) Bending moment
原文传递
Centrifuge modeling of dynamic behavior of pile-reinforced slopes during earthquakes 被引量:4
5
作者 于玉贞 邓丽军 +1 位作者 孙逊 吕禾 《Journal of Central South University》 SCIE EI CAS 2010年第5期1070-1078,共9页
A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pre... A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pressures were obtained during excitation of the adjusted El Centro earthquake and a cyclic motion.Under a realistic earthquake,the overall response of the pile-reinforced slope is lower than that of the non-reinforced slope.The histories of bending moments and dynamic earth pressures reach their maximums soon after shaking started and then remain roughly stable until the end of shaking.Maximum moments occur at the height of 3.5 m,which is the deeper section of the pile,indicating the interface between the active loading and passive resistance regions.The dynamic earth pressures above the slope base steadily increase with the increase of height of pile.For the model under cyclic input motion,response amplitudes at different locations in the slope are almost the same,indicating no significant response amplification.Both the bending moment and earth pressure increase gradually over a long period. 展开更多
关键词 EARTHQUAKE SLOPE stabilizing pile dynamic behavior centrifuge modeling earth pressure ACCELERATION bending moment
下载PDF
Estimating the properties of weathered bedrock and pile-rock interaction from the geological strength index 被引量:1
6
作者 ZHOU Chun-mei SHAO Wei +1 位作者 YIN Kun-long YANG Zong-ji 《Journal of Mountain Science》 SCIE CSCD 2018年第8期1757-1776,共20页
The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to est... The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to estimate the properties of weathered bedrock, which can be applied to routine design of landslide-stabilizing piles for collivial landslides. The Ercengyan landslide located in the Three Gorges Reservoir, China, is the area of interest for this study. A geological investigation and triaxial tests were conducted to estimate the basic parameters, including Geological Strength Index(GSI), uniaxial compressive strength σ_(ci) and Hoek-Brown constant m_i of intact bedrock in the study area. Hoek-Brown criterion was used to estimate mechanical properties of the weathered rock, including elastic modulus E_m, cohesion c, friction angle Φ, and normal ultimate lateral resistance p_(max). A parametric study was performed to evaluate the effect of parameterizations of GSI, σ_(ci) and m_i on the bedrock properties and p-y curves. The estimated rock mass properties were used with PLAXIS 2D software to simulate pile-rock interaction. Effect of GSI on stress at the pile-rock interface and in the rock, pile bending moment, pile shear force, and p-y curve were analysed. 展开更多
关键词 LANDSLIDE stabilizing pile Weathered rock pile-rock interaction Geological strength index
下载PDF
Numerical Analysis of the Stability of Embankment Slope Reinforced with Piles 被引量:1
7
作者 崔溦 张志耕 闫澍旺 《Transactions of Tianjin University》 EI CAS 2007年第2期126-130,共5页
The effects of stabilizing piles on the stability of an embankment slope are analyzed by numerical simulation. The shear strength reduction method is used for the analysis, and the soil - pile interaction is simulated... The effects of stabilizing piles on the stability of an embankment slope are analyzed by numerical simulation. The shear strength reduction method is used for the analysis, and the soil - pile interaction is simulated with zero-thickness elasto-plastic interface elements. Effects of pile spacing and pile position on the safety factor of slope and the behavior of piles under these conditions are given. The numerical analysis indicates that the positions of the pile have significant influence on the stability of the slope, and the pile needs to be installed in the middle of the slope for maximum safety factors. In the end, the soil arching effect closely associated with the space between stabilizing piles is analyzed. The results are helpful for design and construction of stabilizing piles. 展开更多
关键词 stabilizing piles embankment slope shear strength reduction method interface element numerical simulation
下载PDF
Numerical analysis of pile–slope stability and the soil arching around two adjacent piles
8
作者 Chien-Yuan CHEN Chun-Kai CHANG Yu-Shan LIN 《Journal of Mountain Science》 SCIE CSCD 2022年第11期3270-3285,共16页
Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in t... Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in the static and seismic stability of the pile–slope caused by the interaction between stabilizing piles. Pile–slope stability analysis was performed to determine the optimal design of piles along a slope and the corresponding failure mode involving the formation of soil arching around two adjacent piles. The Factor of Safety(FS) of the slope was evaluated using the shear strength reduction method for static and seismic analyses. The results of the analysis show that suitable pile spacing(S) and a suitable pile diameter(D) in the middle of a slope result in the maximum FS for the pile–slope system and the formation of soil arching around two adjacent piles. FS of the pile–slope increased negligibly in the seismic analysis of piles located at the slope crest and toe. An optimized pile diameter and installation location afforded the maximum FS for the slope that corresponded to a specified slope failure mode for different pile locations. A pile spacing S ≤ 2.5D for piles installed in the middle of the slope is suggested for increasing the static and seismic pile–slope stability. 展开更多
关键词 Numerical modeling Slope stability stabilizing pile Arching effect Seismic analysis Failure mode
下载PDF
Recent advances in high slope reinforcement in China: Case studies 被引量:6
9
作者 Zuyu Chen Zhen Wang +4 位作者 Hao Xi Zeyan Yang Lichun Zou Zhong Zhou Chuangbing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期775-788,共14页
This paper reviews a number of engineering technologies and workmanships for addressing the challenging issues concerning possible landslides in large-scale slope reinforcement projects in China.It includes:(1) the mu... This paper reviews a number of engineering technologies and workmanships for addressing the challenging issues concerning possible landslides in large-scale slope reinforcement projects in China.It includes:(1) the multi-point anchored piles with a depth of 64 m in the Jietai Temple rehabilitation project,(2) soil nailing strengthened by driven pipe grouting technique covering an area of530 m × 100 m(length × height) in the Xiluodu hydropower project,(3) the cantilever piles extending vertically from the slope toe to stabilize a 300 m high slope at the Xiaowan hydropower station,(4) a new and simple workmanship for building a pile with cross-sectional area of 20 m × 5 m in the Hongjiadu hydropower station,and(5) comprehensive reinforcement scheme proposed for excavation of a 530 m high slope in Jinping I hydropower station.These new technologies can provide valuable experiences for reinforcement of high slopes of similar projects in China and other regions and countries with similar geological conditions. 展开更多
关键词 Slope engineering stabilizing pile Soil nail Shear resistance structure
下载PDF
Investigation on Cutting Stability of Jacket in Decommissioning Process 被引量:1
10
作者 李美求 段梦兰 黄一 《China Ocean Engineering》 SCIE EI CSCD 2015年第5期649-661,共13页
Jacket cutting operation is one of the most complicated and highest risk operations in the process of decommissioning offshore piled platform, the security and stability of which must be assured. In this paper, the cu... Jacket cutting operation is one of the most complicated and highest risk operations in the process of decommissioning offshore piled platform, the security and stability of which must be assured. In this paper, the current research on offshore structure removal and jacket cutting is introduced, on the basis of which the types of load along with the load calculation method are determined. The main influences on the stability of a jacket in cutting are analyzed. The experiment test plan is drawn by using orthogonal testing method, and the formula of critical load during the cutting procedure is deduced by differential evolution algorithm. To verify the method and results of this paper, an offshore piled platform to be decommissioned in the South China Sea is taken for an example, and the detailed schedule for jacket cutting is made with the three-dimensional finite element model of the jacket established. The natural frequency, stress, strain and stability of the jacket during cutting process are calculated, which indicates that the results of finite element analysis agree well with that of the deduced formula. The result provides the scientific reference for guaranteeing the safety of jacket in cutting operation. 展开更多
关键词 stability jacket cutting operation piled platforms decommissioning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部