In this study, the experiments on field were conducted to examine the change in the content of soil organic carbon (SOC), its C-13 stable isotope composition (δ 13C) and some main physical, chemical parameters (soil ...In this study, the experiments on field were conducted to examine the change in the content of soil organic carbon (SOC), its C-13 stable isotope composition (δ 13C) and some main physical, chemical parameters (soil moisture, pH, soil density, content of humic, fulvic, total N, total P, total K) in alluvial soil of Dan Phuong region—Vietnam at a depth of 0 - 30 cm when we changed the regime from 2 maize -1 rice crop to 2 rice - 1 maize crop per 1 year. In addition to analyzing the main parameters in soil, C content and its δ 13C value in parts of rice and maize (root, stem and leaf) were also analyzed to assess the contribution of plant residues on soil organic carbon content after harvest. The experiment was carried out in 2016-2017 on the field with the traditional farming method of local farmers along with the tropical monsoon weather conditions of the North-Vietnam. The results showed that SOC had positive correlation with total N, total P parameters and negative correlation with δ 13C values of soil samples at two layers (0 - 15 cm and 15 - 30 cm). The average of total dry biomass (stem, stump + roots and leaf parts) per 1 rice and 1 maize crop was 10.64 Mg/ha and 9.09 Mg/ha, respectively. The average of δ 13C value of rice (C3 plant) was -29.78‰ and its value of maize (C4 plant) was -12.61‰. The new plant (rice) contributes to the total soil organic carbon content from 11.31% to 44.14% at the 0 - 15 cm layer and from 6.55% to 11.31% at the 15 - 30 cm layer in one-year experiment period.展开更多
Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Q...Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.展开更多
Carbon isotope composition(δ^(13)C)of a plant organ is an inherent signature reflecting its physiological property,and thus is used as an integrative index in crop breeding.It is also a non-intrusive method for quant...Carbon isotope composition(δ^(13)C)of a plant organ is an inherent signature reflecting its physiological property,and thus is used as an integrative index in crop breeding.It is also a non-intrusive method for quantifying the relative contribution of different source organs to grain filling in cereals.Using the samples collected from two-year field and pot experiments with two nitrogen(N)fertilization treatments,we investigated the temporal and spatial variations of δ^(13)C in source organs of leaf,sheath,internode,and bracts,and in sink organ grain.Constitutive nature of δ^(13)C was uncovered,with an order of leaf(−27.84‰)<grain(−27.82‰)<sheath(−27.24‰)<bracts(−26.81‰)<internode(−25.67‰).For different positions of individual organs within the plant,δ^(13)C of the leaf and sheath presented a diminishing trend from the top(flag leaf and its sheath)to the bottom(the last leaf in reverse order and its sheath).No obvious pattern was found for the internode.For temporal variations, δ^(13)C of the leaf and sheath had a peak(the most negative)at 10 days after anthesis(DAA),whereas that of the bracts showed a marked increase at the time point of anthesis,implying a transformation from sink to source organ.By comparing the δ^(13)C in its natural abundance in the water-soluble fractions of the sheath,internode,and bracts with the δ^(13)C in mature grains,the relative contribution of these organs to grain filling was assessed.With reference to the leaf,the internode accounted for as high as 32.64%and 42.56%at 10 DAA and 20 DAA,respectively.Meanwhile,bracts presented a larger contribution than the internode,with superior bracts being higher than inferior bracts.In addition,N topdressing reduced the contribution of the internode and bracts.Our findings clearly proved the actual significance of non-foliar organs of the internode and bracts for rice yield formation,thus extending our basic knowledge of source and sink relations.展开更多
Biochar application and conservation tillage are significant for long-term organic carbon(OC)sequestration in soil and enhancing crop yields,however,their effects on native soil organic carbon(native SOC)without bioch...Biochar application and conservation tillage are significant for long-term organic carbon(OC)sequestration in soil and enhancing crop yields,however,their effects on native soil organic carbon(native SOC)without biochar carbon sequestration in situ remain largely unknown.Here,an 11-year field experiment was carried out to examine different biochar application rates(0,30,60,and 90 Mg ha^(−1))on native SOC pools(native labile SOC pool I and II,and native recalcitrant SOC)and microbial activities in calcareous soil across an entire winter wheat-maize rotation.The proportions of C_(3) and C_(4)-derived native SOC mineralization were quantified using soil basal respiration(SBR)combined with 13C natural isotope abundance measurements.The results showed that 39-51%of the biochar remained in the top 30 cm after 11 years.Biochar application rates significantly increased native SOC and native recalcitrant SOC contents but decreased the proportion of native labile SOC[native labile SOC pool I and II,dissolved organic carbon(DOC),and microbial biomass carbon(MBC)].Biochar application tended to increase the indicators of microbial activities associated with SOC degradation,such as SBR,fluorescein diacetate hydrolysis activity,and metabolic quotient(qCO_(2)).Meanwhile,higher biochar application rates(B60 and B90)significantly increased the C_(4)-derived CO_(2) proportion of the SBR and enhanced C_(4)-derived native SOC mineralization.The effect of the biochar application rate on the content and proportion of native SOC fractions occurred in the 0-15 cm layer,however,there were no significant differences at 15-30 cm.Soil depth also significantly increased native labile SOC pool Ⅰ and Ⅱ contents and decreased qCO_(2).In conclusion,the biochar application rate significantly increased native SOC accumulation in calcareous soil by enhancing the proportion of native recalcitrant SOC,and biochar application and soil depth collectively influenced the seasonal turnover of native SOC fractions,which has important implications for long-term agricultural soil organic carbon sequestration.展开更多
In calcareous soils,recent studies have shown that soil-derived CO_(2)originates from both soil organic carbon(SOC)decomposition and soil inorganic carbon(SIC)dissolution,a fact often ignored in earlier studies.This m...In calcareous soils,recent studies have shown that soil-derived CO_(2)originates from both soil organic carbon(SOC)decomposition and soil inorganic carbon(SIC)dissolution,a fact often ignored in earlier studies.This may lead to overestimation of the CO_(2)emissions from SOC decomposition.In calcareous soils,there is a chemical balance between precipitation and dissolution of CaCO_(3)-CO_(2)-HCO_(3),which is affected by soil environmental factors(moisture,temperature,pH and depth),root growth(rhizosphere effect)and agricultural measures(organic materials input,nitrogen fertilization and straw removal).In this paper,we first introduced the contribution of SIC dissolution to CO_(2)emissions from calcareous soils and their driving factors.Second,we reviewed the methods to distinguish two CO_(2)sources released from calcareous soils and quantify the 13C fractionation coefficient between SIC and SIC-derived CO_(2)and between SOC and SOC-derived CO_(2),and to partition three CO_(2)sources released from soils with plants and organic materials input.Finally,we proposed methods for accurately distinguishing three CO_(2)sources released from calcareous soils.This review helps to improve the accuracy of soil C balance assessment in calcareous soils,and also proposes the direction of further investigations on SIC-derived CO_(2)emissions responses to abiotic factors and agricultural measures.展开更多
Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable car...Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable carbon isotopic composition of organic matter (δ^(13)C_(org)), were analyzed using a 7.3 m core from Zige Tangco. The source of the organic matter in the sediment was mainly from autochthonous phyto-plankton, therefore the significances of proxies can be interpreted as that high TOC, TOC/TS, HI and δ^(13)C_(org) values, low TC, TIC values corresponded to warm and wet climatic condition, and vice versa. The process of climatic development in the Zige Tangco region was hence recovered. During the early and Mid-Holocene, the climate was warm and wet and intensive cold events occurred during the periods of 8600 to 8400 cal a BP and 7400 to 7000 cal a BP. In the second half of Holocene, the climate became cold and dry gradually. The palaeoclimatic process during Holocene in Zige Tangco region matched well with that in Co Ngoin region which is ca 40 km to the south-east. Therefore this palaeoclimatic process represents the Holocene climatic feature in the Central Tibetan Plateau which has the same pattern in the Northern Tibetan Plateau, but the time and duration of some climatic events might be different. We can conclude that in Holocene solar insolation controlled the climatic pattern on the central Tibetan Plateau.展开更多
文摘In this study, the experiments on field were conducted to examine the change in the content of soil organic carbon (SOC), its C-13 stable isotope composition (δ 13C) and some main physical, chemical parameters (soil moisture, pH, soil density, content of humic, fulvic, total N, total P, total K) in alluvial soil of Dan Phuong region—Vietnam at a depth of 0 - 30 cm when we changed the regime from 2 maize -1 rice crop to 2 rice - 1 maize crop per 1 year. In addition to analyzing the main parameters in soil, C content and its δ 13C value in parts of rice and maize (root, stem and leaf) were also analyzed to assess the contribution of plant residues on soil organic carbon content after harvest. The experiment was carried out in 2016-2017 on the field with the traditional farming method of local farmers along with the tropical monsoon weather conditions of the North-Vietnam. The results showed that SOC had positive correlation with total N, total P parameters and negative correlation with δ 13C values of soil samples at two layers (0 - 15 cm and 15 - 30 cm). The average of total dry biomass (stem, stump + roots and leaf parts) per 1 rice and 1 maize crop was 10.64 Mg/ha and 9.09 Mg/ha, respectively. The average of δ 13C value of rice (C3 plant) was -29.78‰ and its value of maize (C4 plant) was -12.61‰. The new plant (rice) contributes to the total soil organic carbon content from 11.31% to 44.14% at the 0 - 15 cm layer and from 6.55% to 11.31% at the 15 - 30 cm layer in one-year experiment period.
基金supported by Basic Research Operating Expenses of the Central level Non-profit Research Institutes (IDM2022003)National Natural Science Foundation of China (42375054)+2 种基金Regional collaborative innovation project of Xinjiang (2021E01022,2022E01045)Young Meteorological Talent Program of China Meteorological Administration,Tianshan Talent Program of Xinjiang (2022TSYCCX0003)Youth Innovation Team of China Meteorological Administration (CMA2023QN08).
文摘Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.
基金The research was supported by the National Key Research and Development Program of China(2017YFD0300103)the National Natural Science Foundation of China(31771719)+2 种基金National High Technology Research and Development Program of China(2014AA10A605)Rothamsted Research receives strategic funding from the Biological and Biotechnological Sciences Research Council of the United KingdomMatthew Paul acknowledges the Designing Future Wheat Strategic Program(BB/P016855/1).
文摘Carbon isotope composition(δ^(13)C)of a plant organ is an inherent signature reflecting its physiological property,and thus is used as an integrative index in crop breeding.It is also a non-intrusive method for quantifying the relative contribution of different source organs to grain filling in cereals.Using the samples collected from two-year field and pot experiments with two nitrogen(N)fertilization treatments,we investigated the temporal and spatial variations of δ^(13)C in source organs of leaf,sheath,internode,and bracts,and in sink organ grain.Constitutive nature of δ^(13)C was uncovered,with an order of leaf(−27.84‰)<grain(−27.82‰)<sheath(−27.24‰)<bracts(−26.81‰)<internode(−25.67‰).For different positions of individual organs within the plant,δ^(13)C of the leaf and sheath presented a diminishing trend from the top(flag leaf and its sheath)to the bottom(the last leaf in reverse order and its sheath).No obvious pattern was found for the internode.For temporal variations, δ^(13)C of the leaf and sheath had a peak(the most negative)at 10 days after anthesis(DAA),whereas that of the bracts showed a marked increase at the time point of anthesis,implying a transformation from sink to source organ.By comparing the δ^(13)C in its natural abundance in the water-soluble fractions of the sheath,internode,and bracts with the δ^(13)C in mature grains,the relative contribution of these organs to grain filling was assessed.With reference to the leaf,the internode accounted for as high as 32.64%and 42.56%at 10 DAA and 20 DAA,respectively.Meanwhile,bracts presented a larger contribution than the internode,with superior bracts being higher than inferior bracts.In addition,N topdressing reduced the contribution of the internode and bracts.Our findings clearly proved the actual significance of non-foliar organs of the internode and bracts for rice yield formation,thus extending our basic knowledge of source and sink relations.
基金This research received funding from the National Natural Science Foundation of China(No.61511012).
文摘Biochar application and conservation tillage are significant for long-term organic carbon(OC)sequestration in soil and enhancing crop yields,however,their effects on native soil organic carbon(native SOC)without biochar carbon sequestration in situ remain largely unknown.Here,an 11-year field experiment was carried out to examine different biochar application rates(0,30,60,and 90 Mg ha^(−1))on native SOC pools(native labile SOC pool I and II,and native recalcitrant SOC)and microbial activities in calcareous soil across an entire winter wheat-maize rotation.The proportions of C_(3) and C_(4)-derived native SOC mineralization were quantified using soil basal respiration(SBR)combined with 13C natural isotope abundance measurements.The results showed that 39-51%of the biochar remained in the top 30 cm after 11 years.Biochar application rates significantly increased native SOC and native recalcitrant SOC contents but decreased the proportion of native labile SOC[native labile SOC pool I and II,dissolved organic carbon(DOC),and microbial biomass carbon(MBC)].Biochar application tended to increase the indicators of microbial activities associated with SOC degradation,such as SBR,fluorescein diacetate hydrolysis activity,and metabolic quotient(qCO_(2)).Meanwhile,higher biochar application rates(B60 and B90)significantly increased the C_(4)-derived CO_(2) proportion of the SBR and enhanced C_(4)-derived native SOC mineralization.The effect of the biochar application rate on the content and proportion of native SOC fractions occurred in the 0-15 cm layer,however,there were no significant differences at 15-30 cm.Soil depth also significantly increased native labile SOC pool Ⅰ and Ⅱ contents and decreased qCO_(2).In conclusion,the biochar application rate significantly increased native SOC accumulation in calcareous soil by enhancing the proportion of native recalcitrant SOC,and biochar application and soil depth collectively influenced the seasonal turnover of native SOC fractions,which has important implications for long-term agricultural soil organic carbon sequestration.
基金Foundation of China(32072518 and 42141006)the Natural Science Foundation of Shandong Province(ZR2020QD042).
文摘In calcareous soils,recent studies have shown that soil-derived CO_(2)originates from both soil organic carbon(SOC)decomposition and soil inorganic carbon(SIC)dissolution,a fact often ignored in earlier studies.This may lead to overestimation of the CO_(2)emissions from SOC decomposition.In calcareous soils,there is a chemical balance between precipitation and dissolution of CaCO_(3)-CO_(2)-HCO_(3),which is affected by soil environmental factors(moisture,temperature,pH and depth),root growth(rhizosphere effect)and agricultural measures(organic materials input,nitrogen fertilization and straw removal).In this paper,we first introduced the contribution of SIC dissolution to CO_(2)emissions from calcareous soils and their driving factors.Second,we reviewed the methods to distinguish two CO_(2)sources released from calcareous soils and quantify the 13C fractionation coefficient between SIC and SIC-derived CO_(2)and between SOC and SOC-derived CO_(2),and to partition three CO_(2)sources released from soils with plants and organic materials input.Finally,we proposed methods for accurately distinguishing three CO_(2)sources released from calcareous soils.This review helps to improve the accuracy of soil C balance assessment in calcareous soils,and also proposes the direction of further investigations on SIC-derived CO_(2)emissions responses to abiotic factors and agricultural measures.
基金National Natural Science Foundation of China (Grant Nos. 40471001 and 90411017)
文摘Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable carbon isotopic composition of organic matter (δ^(13)C_(org)), were analyzed using a 7.3 m core from Zige Tangco. The source of the organic matter in the sediment was mainly from autochthonous phyto-plankton, therefore the significances of proxies can be interpreted as that high TOC, TOC/TS, HI and δ^(13)C_(org) values, low TC, TIC values corresponded to warm and wet climatic condition, and vice versa. The process of climatic development in the Zige Tangco region was hence recovered. During the early and Mid-Holocene, the climate was warm and wet and intensive cold events occurred during the periods of 8600 to 8400 cal a BP and 7400 to 7000 cal a BP. In the second half of Holocene, the climate became cold and dry gradually. The palaeoclimatic process during Holocene in Zige Tangco region matched well with that in Co Ngoin region which is ca 40 km to the south-east. Therefore this palaeoclimatic process represents the Holocene climatic feature in the Central Tibetan Plateau which has the same pattern in the Northern Tibetan Plateau, but the time and duration of some climatic events might be different. We can conclude that in Holocene solar insolation controlled the climatic pattern on the central Tibetan Plateau.