期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
稳定正规环分解定理
1
作者 戴清平 《国防科技大学学报》 EI CAS CSCD 1998年第4期101-102,共2页
提出了稳定正规环的概念;推广了正规环的分解定理;给出了正则局部环整性的一个简单证明;指出了研究正则环的一条新途径。
关键词 稳定环 分解定理 正规环 交换诺特环
下载PDF
Lie环分解中的Krull-Schmidt定理
2
作者 廖军 刘合国 《数学物理学报(A辑)》 CSCD 北大核心 2009年第2期399-405,共7页
该文得到了Lie环分解的Krull—Schmidt定理:若L是在理想上满足极大、极小条件的Lie环,如果L=H1+H2+…+Hr=K1+K2+…+Ks是L的两个Remak分解,即Hi和Kj是不可分解的,那么r=s,并且存在L的一个中心自同构a,使在适当排列Kj的顺序后... 该文得到了Lie环分解的Krull—Schmidt定理:若L是在理想上满足极大、极小条件的Lie环,如果L=H1+H2+…+Hr=K1+K2+…+Ks是L的两个Remak分解,即Hi和Kj是不可分解的,那么r=s,并且存在L的一个中心自同构a,使在适当排列Kj的顺序后,Hi^a=Ki,进一步地,对任意的k=1,2,…,r,L=K1+K2…+Kk+Hk+1+…Hr.如果L=H1+H2+…Hr是L的一个Remak分解,那么这个分解是L的唯一Remak分解当且仅当对L的任意正规自同态θ有Hi^θ≤Hi,i=1,2,…,r. 展开更多
关键词 Krull—Schmidt定理 LIE环 直和分解 极大极小条件.
下载PDF
Is Evolution a Causal, Yet Not-Predetermined Process?
3
作者 Maria K. Koleva 《Journal of Modern Physics》 2022年第5期707-721,共15页
It is demonstrated that “survival of the fittest” approach suffers fundamental flaw planted in its very goal: reaching a uniform state starting from a minor random event. Simple considerations prove that a generic p... It is demonstrated that “survival of the fittest” approach suffers fundamental flaw planted in its very goal: reaching a uniform state starting from a minor random event. Simple considerations prove that a generic property of any such state is its global instability. That is why a new approach to the evolution is put forward. It conjectures equilibrium for systems put in an ever-changing environment. The importance of this issue lies in the view that an ever-changing environment is much closer to the natural environment where the biological species live in. The major goal of the present paper is to demonstrate that a specific form of dynamical equilibrium among certain mutations is established in each and every stable in a long-run system. Major result of our considerations is that neither mutation nor either kind dominates forever because a temporary dynamical equilibrium is replaced with another one in the time course. It will be demonstrated that the evolution of those pieces of equilibrium is causal, yet not predetermined process. 展开更多
关键词 stable Evolution Survival of the Fittest CAUSALITY Central Limit theorem decomposition theorem Markov Process
下载PDF
一类周期拟环的结构
4
作者 Ashraf M Quadri M A Jacob V W (Departnlent of Mathematics,Aligarh Muslim University,Aligarh 202002,India) 《吉林大学自然科学学报》 CSCD 1994年第3期17-20,共4页
本文得到了拟环满足条件xy=xy ̄(n(x,y)x或xy=yx ̄(n(x,y)y的分解定理。
关键词 周期拟环 结构 分解定理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部