期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
Data Cleaning Based on Stacked Denoising Autoencoders and Multi-Sensor Collaborations 被引量:1
1
作者 Xiangmao Chang Yuan Qiu +1 位作者 Shangting Su Deliang Yang 《Computers, Materials & Continua》 SCIE EI 2020年第5期691-703,共13页
Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been prop... Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach. 展开更多
关键词 Data cleaning wireless sensor networks stacked denoising autoencoders multi-sensor collaborations
下载PDF
Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders 被引量:2
2
作者 Samah Ibrahim Alshathri Desiree Juby Vincent V.S.Hari 《Computers, Materials & Continua》 SCIE EI 2022年第4期1371-1386,共16页
Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In ... Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In this paper,letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method.A stacked denoising autoencoder(SDAE)is implemented with two hidden layers each in encoder network and decoder network.In order to capture the most salient features of training samples,a undercomplete autoencoder is designed with non-linear encoder and decoder function.This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy.A dataset consisting of 59,119 letter images,which contains both English alphabets(upper and lower case)and numbers(0 to 9)is prepared from many scanned invoices images and windows true type(.ttf)files,are used for training the neural network.Performance is analyzed in terms of Signal to Noise Ratio(SNR),Peak Signal to Noise Ratio(PSNR),Structural Similarity Index(SSIM)and Universal Image Quality Index(UQI)and compared with other filtering techniques like Nonlocal Means filter,Anisotropic diffusion filter,Gaussian filters and Mean filters.Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values.Results show the superior performance of proposed SDAE method. 展开更多
关键词 stacked denoising autoencoder(SDAE) optical character recognition(OCR) signal to noise ratio(SNR) universal image quality index(UQ1)and structural similarity index(SSIM)
下载PDF
Fault Diagnosis for Rolling Bearings with Stacked Denoising Auto-encoder of Information Aggregation
3
作者 Li Zhang Xin Gao Xiao Xu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第4期69-77,共9页
Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rollin... Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder(SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes’ expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis(PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms. 展开更多
关键词 DEEP learning stacked denoising auto-encoder FAULT diagnosis PCA classification
下载PDF
基于改进变分模态分解和优化堆叠降噪自编码器的轴承故障诊断 被引量:1
4
作者 张彬桥 舒勇 江雨 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1408-1421,共14页
针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自... 针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自适应优化分解参数的改进VMD方法,并通过该指标筛选分解后的本征模态函数(IMF)分量;然后,为提取更全面的故障特征,引入新的复合缩放排列熵对各有效IMF的故障特征进行量化;最后,提出一种基于鼠群优化算法(RSO)与麻雀搜索算法(SSA)的混合算法优化SDAE网络超参数,将故障特征输入优化后SDAE网络中得到分类结果。采用美国CWRU轴承数据集进行验证,实验结果表明该方法能全面稳定地提取背景噪声下的故障特征,且与其他方法相比具有更好的抗噪性能和更高的故障诊断准确率。 展开更多
关键词 变分模态分解 综合评价指标 复合缩放排列熵 混合算法 堆叠降噪自编码器
下载PDF
基于SDAE的终端区气象场景模式识别方法
5
作者 杨新湦 罗秋晴 张召悦 《河南科技大学学报(自然科学版)》 北大核心 2024年第2期96-104,M0008,共10页
气象条件是影响终端区航空器运行安全及效率的主要因素之一。为提高终端区气象场景模式识别精度,采用基于堆叠降噪自编码(SDAE)的聚类模型,在输入层添加随机噪声、构建3层自编码、逐层贪婪训练,降维后的特征作为聚类的输入,实现气象场... 气象条件是影响终端区航空器运行安全及效率的主要因素之一。为提高终端区气象场景模式识别精度,采用基于堆叠降噪自编码(SDAE)的聚类模型,在输入层添加随机噪声、构建3层自编码、逐层贪婪训练,降维后的特征作为聚类的输入,实现气象场景的模式识别。以天津滨海国际机场2022年气象观测数据为例,基于SDAE与欧氏距离、汉明距离、曼哈顿距离等传统相似性距离度量方法,分别使用K-medoids与FCM两种聚类方法进行验证。结果表明:基于SDAE的相似性度量在K-medoids与FCM聚类中均表现最优,与其他相似性度量相比差异率分别达到22.4%,12%,17.7%与24.8%,10.7%,11.8%,且运算时间最短,证明了基于SDAE的度量、聚类效果最优,最终识别出8个气象场景,各场景分类清晰明确。 展开更多
关键词 气象特征 堆叠降噪自编码 K-medoids FCM
下载PDF
基于深度SSDAE网络的刀具磨损状态识别
6
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
下载PDF
基于特征提取和最优加权集成策略的风机叶片结冰故障检测
7
作者 孙坚 杨宇兵 《科学技术与工程》 北大核心 2024年第11期4501-4509,共9页
针对风机叶片结冰检测中现有集成方法不能充分发挥不同个体分类器优势的问题,提出了一种基于特征提取和最优加权集成学习的叶片结冰检测模型。首先,用堆叠降噪自动编码器提取结冰关联特征后,考虑不同单一分类器在二分类应用中的表现及... 针对风机叶片结冰检测中现有集成方法不能充分发挥不同个体分类器优势的问题,提出了一种基于特征提取和最优加权集成学习的叶片结冰检测模型。首先,用堆叠降噪自动编码器提取结冰关联特征后,考虑不同单一分类器在二分类应用中的表现及其差异,选择随机森林、极限梯度提升树、轻量梯度提升机、K-近邻算法作为个体学习器,并用贝叶斯算法对其进行超参数优化。然后提出基于序列二次规划的最优加权集成策略对叶片状态进行判别。最后利用金风科技提供的15号和21号风机的历史数据进行了仿真实验,结果表明:所提出的检测模型与个体学习器及其他集成模型相比多项指标均有所提升,准确度达到了99.2%,在结冰检测方面具有一定的有效性。 展开更多
关键词 结冰检测 堆叠降噪自动编码器 贝叶斯优化 序列二次规划 最优加权集成
下载PDF
基于MRSDAE-KPCA结合Bi-LST的滚动轴承剩余使用寿命预测
8
作者 古莹奎 陈家芳 石昌武 《噪声与振动控制》 CSCD 北大核心 2024年第3期95-100,145,共7页
针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承... 针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承剩余使用寿命预测方法。首先采用无监督的堆栈去噪自编码器网络对原始振动数据进行深层特征提取,并使用核主成分分析法进一步降维,以提高健康因子的指标稳定性;然后在堆栈去噪自编码器中加入流形正则化,最大程度保留编码器隐藏层内部的数据分布结构,提高模型提取数据特征的有效性。最后使用双向长短时记忆网络预测轴承的剩余使用寿命,并采用AdaMax优化算法对网络模型的超参数进行自适应寻优。分析结果表明,提出的滚动轴承剩余使用寿命预测方法具有更高的精度。 展开更多
关键词 故障诊断 滚动轴承 剩余使用寿命预测 健康因子 流形正则化堆栈去噪自编码器 双向长短时记忆网络
下载PDF
基于堆叠稀疏去噪自编码器的混合入侵检测方法
9
作者 田世林 李焕洲 +2 位作者 唐彰国 张健 李其臻 《四川师范大学学报(自然科学版)》 CAS 2024年第4期517-527,共11页
针对高维数据场景下传统入侵检测方法特征提取困难、检测准确率低等问题,提出一种集成多种深度学习模型的混合入侵检测方法.该方法由特征降维算法和混合检测模型2部分组成.首先,利用堆叠稀疏去噪自编码器对原始数据进行特征降维,从而剔... 针对高维数据场景下传统入侵检测方法特征提取困难、检测准确率低等问题,提出一种集成多种深度学习模型的混合入侵检测方法.该方法由特征降维算法和混合检测模型2部分组成.首先,利用堆叠稀疏去噪自编码器对原始数据进行特征降维,从而剔除可能存在的噪声干扰和冗余信息.然后,采用一维卷积神经网络和双向门控循环单元学习数据中的空间维度特征和时序维度特征,将融合后的空时特征通过注意力分配不同的权重系数,从而使有用的信息得到更好表达,再经由全连接层训练后进行分类.为检验方案的可行性,在UNSW-NB15数据集上进行验证.结果表明,该模型与其他同类型入侵检测算法相比,拥有更优秀的检测性能,其准确率达到99.57%,误报率仅为0.68%. 展开更多
关键词 异常检测 注意力机制 堆叠稀疏去噪自编码器 一维卷积神经网络 双向门控循环单元
下载PDF
基于堆叠降噪自编码器的肝癌亚型分类
10
作者 张甜甜 赵庶旭 王小龙 《计算机应用与软件》 北大核心 2024年第6期79-84,共6页
肝癌是威胁人类健康的常见恶性肿瘤之一。通过对基因数据使用深度学习方法进行整合来系统地获取对肝癌的认知,使用多组学的疾病分析方法来探究各组学之间的相互关系,有助于更准确的临床决策。然而,由于多组学数据具有高维稀疏性,存在大... 肝癌是威胁人类健康的常见恶性肿瘤之一。通过对基因数据使用深度学习方法进行整合来系统地获取对肝癌的认知,使用多组学的疾病分析方法来探究各组学之间的相互关系,有助于更准确的临床决策。然而,由于多组学数据具有高维稀疏性,存在大量的冗余特征和较少的可用临床标签样本。堆叠降噪编码器(SDAE)是能够从海量数据中获取有效特征的高效模型,因此基于SDAE模型提出一种层次式堆叠降噪编码器,来学习肝癌的RNA表达、miRNA表达和DNA甲基化数据的特征并进行整合和识别。实验结果表明:Hi-SDAE方法提高了对肝癌亚型分类的准确度,为肝癌针对性治疗提供了更有价值的参考依据。 展开更多
关键词 堆叠降噪 自动编码器 数据降维 多组学整合 肝癌亚型
下载PDF
SDAEC算法在单细胞测序数据批次校正中的应用
11
作者 王文杰 李康 谢宏宇 《中国卫生统计》 CSCD 北大核心 2024年第4期501-506,共6页
目的 提出深度堆叠降噪自编码嵌套聚类(stacked denoising auto encoder embedded cluster, SDAEC)算法并用于单细胞mRNA测序(single cell mRNA sequence, scRNA-seq)数据的批次效应移除,对其移除批次效应性能进行评估。方法 基于单细... 目的 提出深度堆叠降噪自编码嵌套聚类(stacked denoising auto encoder embedded cluster, SDAEC)算法并用于单细胞mRNA测序(single cell mRNA sequence, scRNA-seq)数据的批次效应移除,对其移除批次效应性能进行评估。方法 基于单细胞数据具有高维度、高稀疏性及高度非线性误差特点,通过将单细胞Louvain聚类算法嵌入堆叠降噪自动编码器(stacked denoising auto encoder, SDAE)算法中,形成SDAEC算法,用于单细胞测序数据的批次效应移除。结合实际卵巢癌组织scRNA-seq数据,利用分布邻域嵌入(t-distributed stochastic neighbor embedding, tSNE)、 k最近邻批次效应检测(k-nearest-neighbor batch-effect test, kBET)、调整兰德系数(adjusted rand index, ARI)、标准化互信息(normalized mutual information, NMI)、平均轮廓宽度(average silhouette width, ASW)评价其移除批次效应性能。结果 利用SDAEC方法对scRNA-seq数据批次效应移除性能高于Combat、相互最近邻(mutual nearest neighbors, MNN)、分布匹配残差网络(maximum mean discrepancy distribution-matching residual networks, MMD-ResNet)和基于零膨胀负二项的方差提取法(zero-inflated negative binomial-based wanted variation extraction, ZINB-WaVE)。结论 SDAEC算法能够移除scRNA-seq数据的批次效应,提高scRNA-seq数据下游分析的有效性,具有实际应用价值。 展开更多
关键词 深度堆叠降噪自编码嵌套聚类 单细胞测序 批次效应 卵巢癌
下载PDF
基于多重降噪自编码网络的接触网开口销缺失识别方法
12
作者 单翀皞 《城市轨道交通研究》 北大核心 2024年第10期274-279,283,共7页
[目的]使用卷积神经网络对接触网开口销进行状态检测时,因正负样本数量不均衡,网络模型对开口销缺失的检出率不高。因此使用单阶段检测网络对开口销进行多级精确定位,并结合多重降噪自编码网络对开口销状态特征进行重构,实现对开口销缺... [目的]使用卷积神经网络对接触网开口销进行状态检测时,因正负样本数量不均衡,网络模型对开口销缺失的检出率不高。因此使用单阶段检测网络对开口销进行多级精确定位,并结合多重降噪自编码网络对开口销状态特征进行重构,实现对开口销缺失的高效检测。[方法]首先使用单阶段定位检测网络对开口销进行位置回归,将定位结果作为多重降噪自编码网络输入,并在不同深度的降噪自编码网络结构层中加入不同程度的深度噪声,通过最小化其重构误差来实现对开口销局部图像的语义理解,进而实现对开口销状态的精准判断;同时,因对开口销局部图像尺寸进行了限制,所以多重降噪自编码网络的计算量相对较小,网络时间复杂度较低。[结果及结论]大量试验结果表明,基于YOLO v5算法的多重降噪自编码网络能实现对接触网各位置开口销缺失情况的精准检出。 展开更多
关键词 地铁 接触网 开口销 YOLO v5算法 多重降噪自编码
下载PDF
东海M构造中深层低渗气藏“甜点”预测技术 被引量:1
13
作者 秦德文 张岩 于杰 《海洋地质前沿》 CSCD 北大核心 2024年第4期83-91,共9页
近年来,构造-岩性复合型油气藏已逐渐成为东海“扩储增产”的重要领域,提高“甜点”储层钻遇率对于勘探开发一体化设计的部署与落实具有重要意义。研究区低渗气藏储层厚、埋深大,内部非均质性强,孔渗关系复杂,地球物理响应特征差异小,... 近年来,构造-岩性复合型油气藏已逐渐成为东海“扩储增产”的重要领域,提高“甜点”储层钻遇率对于勘探开发一体化设计的部署与落实具有重要意义。研究区低渗气藏储层厚、埋深大,内部非均质性强,孔渗关系复杂,地球物理响应特征差异小,亟待开展低渗气藏“甜点”储层的精细表征研究。以地震岩石物理为驱动,利用杨氏阻抗Eρ区分碎屑岩储层与非储层,通过分类寻优认为,剪切模量μ为洁净、粗粒、高渗透率优质储层的综合敏感弹性因子。为了削弱岩石骨架孔隙度的影响,采用高灵敏烃检因子Fρ开展烃类检测,最终结合岩性、“甜点”和烃检属性体以精细表征优质“甜点”储层富集区。应用效果证实:该方法的“甜点”预测吻合度达到86.07%,为井位部署和轨迹优化提供了重要依据,可推广至类似区块以供借鉴。 展开更多
关键词 低渗气藏 地震岩石物理 保幅去噪 叠前反演 "甜点"预测
下载PDF
基于堆叠去噪自编码器的滚动轴承寿命预测
14
作者 唐逸丰 许凡 徐东亮 《自动化与仪表》 2024年第10期124-130,共7页
传统的滚动轴承剩余寿命预测建模方法需要具有丰富经验的专家挑选合适的单一或混合指标亦或模型来提取有效的特化特征曲线,随后采用合适的预测模型进行寿命预测。为解决滚动轴承寿命预测建模专家经验依赖性复杂问题,该文提出了一种基于... 传统的滚动轴承剩余寿命预测建模方法需要具有丰富经验的专家挑选合适的单一或混合指标亦或模型来提取有效的特化特征曲线,随后采用合适的预测模型进行寿命预测。为解决滚动轴承寿命预测建模专家经验依赖性复杂问题,该文提出了一种基于堆叠去噪自编码器(SDAE)深度学习的滚动轴承寿命预测方法。该方法首先将原始数据经过傅立叶变换,然后计算多个时频与指标,其次直接作为堆叠去噪自编码器的输入,最后进行寿命预测。实验结果表明,该文提出的模型预测精准度整体上优于SAE、ELM与LSTM模型。 展开更多
关键词 滚动轴承 堆叠去噪自编码器 深度学习 剩余寿命预测
下载PDF
优化堆叠降噪自编码器用于调度操作票自动校验
15
作者 区伟健 徐策 +2 位作者 曾传凯 蒋宗祺 乐庆丰 《核电子学与探测技术》 CAS 北大核心 2024年第2期356-361,共6页
为实现核电厂变电站电力调度操作票的自动智能校验,提出了一种基于优化堆叠降噪自编码器(OSDAE)操作票自动校验方法。该方法在对操作票文本进行向量化的基础上,利用优化过的堆叠降噪自编码器实现操作票文本的语义辨析与正误自动化校验... 为实现核电厂变电站电力调度操作票的自动智能校验,提出了一种基于优化堆叠降噪自编码器(OSDAE)操作票自动校验方法。该方法在对操作票文本进行向量化的基础上,利用优化过的堆叠降噪自编码器实现操作票文本的语义辨析与正误自动化校验。实验结果表明,所提方法的操作票校验评估综合指标可达94.88%,是几种方法中最高的,具有一定的优势。 展开更多
关键词 堆叠降噪自编码器 金豺狼优化算法 操作票 自动校验
下载PDF
基于改进降噪自编码器的馈线终端失效率预测
16
作者 赵建军 刘佳林 +2 位作者 李洋 王珩瑜 杨挺 《太赫兹科学与电子信息学报》 2024年第5期537-542,557,共7页
配电网中馈线终端设备由于运行环境恶劣,往往面临意外失效问题。本文针对海量馈线终端装置的失效率预测问题,使用堆叠降噪自编码器实现基于馈线终端的各个关键元件的失效率预测;采用基于Dropout的模型正则化方法防止自编码器训练过程中... 配电网中馈线终端设备由于运行环境恶劣,往往面临意外失效问题。本文针对海量馈线终端装置的失效率预测问题,使用堆叠降噪自编码器实现基于馈线终端的各个关键元件的失效率预测;采用基于Dropout的模型正则化方法防止自编码器训练过程中出现过拟合现象,同时采用Adadelta算法对堆叠自编码器进行优化,在保证预测准确率的同时提高学习速率,实现馈线终端故障失效率的高效准确预测;最后基于馈线终端装置现场数据进行仿真验证。仿真结果验证了本文方法对失效率预测的准确性和泛化能力。 展开更多
关键词 馈线终端装置 Dropout方法 Adadelta算法 堆叠降噪自编码器
下载PDF
堆栈自编码器下机电故障信号多尺度滤波方法研究
17
作者 宁永安 《自动化仪表》 CAS 2024年第8期42-46,51,共6页
煤矿机电故障信号组成成分较复杂,会导致煤矿机电故障诊断质量下降。对此,提出基于堆栈自编码器的煤矿机电故障信号多尺度滤波方法。首先,采用非线性时间序列以及相空间重构的方式构建煤矿机电故障函数并采集故障信号。其次,通过成本函... 煤矿机电故障信号组成成分较复杂,会导致煤矿机电故障诊断质量下降。对此,提出基于堆栈自编码器的煤矿机电故障信号多尺度滤波方法。首先,采用非线性时间序列以及相空间重构的方式构建煤矿机电故障函数并采集故障信号。其次,通过成本函数与稀疏约束相结合的方式设计堆栈自编码器,将采集到的故障信号输入堆栈自编码器,以实现故障信号分类。最后,以分类结果为基础,通过集合经验模态分解(EEMD)将故障非平稳信号转变为平稳信号,并采用多尺度滤波对故障信号展开寻优处理,以获取煤矿机电故障的多尺度调解信号,从而实现煤矿机电故障信号多尺度滤波。经试验验证,所提方法对故障信号进行多尺度滤波处理后,大多数频率成分得到了保留,同时滤除了不需要的频率成分。煤矿机电故障诊断准确率平均值为99.71%、诊断时间平均值为0.24 s。该方法能够实现准确、快速的煤矿机电故障诊断。 展开更多
关键词 堆栈自编码器 机电故障 故障信号 多尺度滤波 信号去噪 集合经验模态分解
下载PDF
基于MRSDAE-SOM结合HGRU的滚动轴承RUL预测
18
作者 陈家芳 刘钰凡 吴朗 《现代制造工程》 CSCD 北大核心 2024年第3期148-155,53,共9页
基于传统方法预测轴承剩余使用寿命(Residual Useful Life,RUL),步骤繁多,成本昂贵,且模型不具泛化性。现有的基于深度学习(Deep Learning,DL)的预测方法,由于数据量过大,经常导致模型出现过拟合现象,从而使模型精度不高。为了克服以上... 基于传统方法预测轴承剩余使用寿命(Residual Useful Life,RUL),步骤繁多,成本昂贵,且模型不具泛化性。现有的基于深度学习(Deep Learning,DL)的预测方法,由于数据量过大,经常导致模型出现过拟合现象,从而使模型精度不高。为了克服以上缺点,提出一种基于MRSDAE-SOM结合HGRU的滚动轴承RUL预测方法。首先,使用无监督式网络流形正则化堆栈去噪自编码器(Manifold Regularization Stack Denoising Auto Encoder,MRSDAE)结合自组织映射(Self-Or-ganizing Mapping,SOM)构建轴承健康因子(Health Indicator,HI)。然后,通过分层门控循环单元(Hierarchical Gated Re-current Unit,HGRU)网络建立预测模型,HGRU网络通过加入多尺度层和密集层,使其具有捕获时序特征且集成不同时间尺度注意力信息的能力。最后,通过实验验证表明,相比于其他基于数据驱动的方法,所提方法构建健康因子使用无监督方式,高效快捷且便于应用;预测模型泛化能力好,并有效防止了过拟合现象,实现了更高的预测精度。 展开更多
关键词 深度学习 剩余使用寿命 流形正则化堆栈去噪自编码器 分层门控循环单元
下载PDF
智能通风矿井风速传感器数据清洗模型 被引量:3
19
作者 赵丹 沈志远 +2 位作者 宋子豪 解丽娜 刘柏辰 《中国安全科学学报》 CAS CSCD 北大核心 2023年第9期56-62,共7页
针对当前智能通风矿井风速传感器监测数据清洗破坏信息完整性等问题,提出一种基于堆叠降噪自编码器(SDAE)的矿井风速传感器监测数据清洗模型。首先应用通风系统正常运行状态下的风速数据样本进行SDAE训练,并基于核密度估计(KDE)方法获... 针对当前智能通风矿井风速传感器监测数据清洗破坏信息完整性等问题,提出一种基于堆叠降噪自编码器(SDAE)的矿井风速传感器监测数据清洗模型。首先应用通风系统正常运行状态下的风速数据样本进行SDAE训练,并基于核密度估计(KDE)方法获取训练样本的重构误差上限及容限时间;然后分析测试样本中重构误差、误差持续时间与训练样本的重构误差上限、容限时间之间的关系,辨别“脏”数据类型;最后利用东山煤矿风速传感器监测数据进行有故障样本和无故障样本的数据清洗试验。结果表明:所提模型能自动辨别噪声点和缺失值,并通过数据重构修复“脏”数据,在过滤干扰数据的同时可有效保留通风故障状态信息,相比于降噪自编码器(DAE)、长短时记忆(LSTM)神经网络和卡尔曼滤波(KF)等其他数据清洗模型,该模型的平均绝对误差(MAE)和均方根误差(RMSE)平均降低了75.42%和74.98%。 展开更多
关键词 矿井通风 风速传感器 数据清洗 数据重构 堆叠降噪自编码器(SDAE)
下载PDF
改进沙猫群优化算法优化堆叠降噪自动编码器的发动机故障诊断 被引量:1
20
作者 蒋开正 吕丽平 《机械设计》 CSCD 北大核心 2023年第8期56-62,共7页
车辆发动机振动信号受到噪声干扰,影响故障诊断精度,而堆叠降噪自动编码器(SDAE)可以有效抑制噪声干扰,但SDAE模型超参数对诊断性能影响较大,不合理的模型超参数容易引起SDAE诊断性能不佳。因此,文中采用一种新型沙猫群优化算法(SCSO)对... 车辆发动机振动信号受到噪声干扰,影响故障诊断精度,而堆叠降噪自动编码器(SDAE)可以有效抑制噪声干扰,但SDAE模型超参数对诊断性能影响较大,不合理的模型超参数容易引起SDAE诊断性能不佳。因此,文中采用一种新型沙猫群优化算法(SCSO)对SDAE参数进行优化选取。考虑到沙猫群优化算法(SCSO)中沙猫群种群缺乏变异机制的缺陷,在其探索阶段和开发阶段分别引入柯西变异机制和高斯变异机制,得到了改进沙猫群优化算法(ISCSO),并提出了SCSO优化SDAE的发动机故障诊断方法。发动机故障诊断实例结果表明:与其余5种方法相比,所提方法的平均诊断精度提高了1.47%~6.5%,平均耗时缩短了5.29~19.44 s。 展开更多
关键词 堆叠降噪自动编码器 沙猫群优化算法 柯西变异 高斯变异 发动机 故障诊断
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部