An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models...An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.展开更多
In IoT,routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance.The eva-luation of optimal routing and related routing parameters over the dep...In IoT,routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance.The eva-luation of optimal routing and related routing parameters over the deployed net-work environment is challenging.This research concentrates on modelling a memory-based routing model with Stacked Long Short Term Memory(s-LSTM)and Bi-directional Long Short Term Memory(b-LSTM).It is used to hold the routing information and random routing to attain superior performance.The pro-posed model is trained based on the searching and detection mechanisms to com-pute the packet delivery ratio(PDR),end-to-end(E2E)delay,throughput,etc.The anticipated s-LSTM and b-LSTM model intends to ensure Quality of Service(QoS)even in changing network topology.The performance of the proposed b-LSTM and s-LSTM is measured by comparing the significance of the model with various prevailing approaches.Sometimes,the performance is measured with Mean Absolute Error(MAE)and Root Mean Square Error(RMSE)for mea-suring the error rate of the model.The prediction of error rate is made with Learn-ing-based Stochastic Gradient Descent(L-SGD).This gradual gradient descent intends to predict the maximal or minimal error through successive iterations.The simulation is performed in a MATLAB 2020a environment,and the model performance is evaluated with diverse approaches.The anticipated model intends to give superior performance in contrast to prevailing approaches.展开更多
基金supported by the Natural Science Foundation of Shaanxi Province under Grant 2019JQ206in part by the Science and Technology Department of Shaanxi Province under Grant 2020CGXNG-009in part by the Education Department of Shaanxi Province under Grant 17JK0346。
文摘An accurate landslide displacement prediction is an important part of landslide warning system. Aiming at the dynamic characteristics of landslide evolution and the shortcomings of traditional static prediction models, this paper proposes a dynamic prediction model of landslide displacement based on singular spectrum analysis(SSA) and stack long short-term memory(SLSTM) network. The SSA is used to decompose the landslide accumulated displacement time series data into trend term and periodic term displacement subsequences. A cubic polynomial function is used to predict the trend term displacement subsequence, and the SLSTM neural network is used to predict the periodic term displacement subsequence. At the same time, the Bayesian optimization algorithm is used to determine that the SLSTM network input sequence length is 12 and the number of hidden layer nodes is 18. The SLSTM network is updated by adding predicted values to the training set to achieve dynamic displacement prediction. Finally, the accumulated landslide displacement is obtained by superimposing the predicted value of each displacement subsequence. The proposed model was verified on the Xintan landslide in Hubei Province, China. The results show that when predicting the displacement of the periodic term, the SLSTM network has higher prediction accuracy than the support vector machine(SVM) and auto regressive integrated moving average(ARIMA). The mean relative error(MRE) is reduced by 4.099% and 3.548% respectively, while the root mean square error(RMSE) is reduced by 5.830 mm and 3.854 mm respectively. It is concluded that the SLSTM network model can better simulate the dynamic characteristics of landslides.
文摘In IoT,routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance.The eva-luation of optimal routing and related routing parameters over the deployed net-work environment is challenging.This research concentrates on modelling a memory-based routing model with Stacked Long Short Term Memory(s-LSTM)and Bi-directional Long Short Term Memory(b-LSTM).It is used to hold the routing information and random routing to attain superior performance.The pro-posed model is trained based on the searching and detection mechanisms to com-pute the packet delivery ratio(PDR),end-to-end(E2E)delay,throughput,etc.The anticipated s-LSTM and b-LSTM model intends to ensure Quality of Service(QoS)even in changing network topology.The performance of the proposed b-LSTM and s-LSTM is measured by comparing the significance of the model with various prevailing approaches.Sometimes,the performance is measured with Mean Absolute Error(MAE)and Root Mean Square Error(RMSE)for mea-suring the error rate of the model.The prediction of error rate is made with Learn-ing-based Stochastic Gradient Descent(L-SGD).This gradual gradient descent intends to predict the maximal or minimal error through successive iterations.The simulation is performed in a MATLAB 2020a environment,and the model performance is evaluated with diverse approaches.The anticipated model intends to give superior performance in contrast to prevailing approaches.