Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc...Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods.展开更多
Referring expressions comprehension is the task of locating the image region described by a natural language expression,which refer to the properties of the region or the relationships with other regions.Most previous...Referring expressions comprehension is the task of locating the image region described by a natural language expression,which refer to the properties of the region or the relationships with other regions.Most previous work handles this problem by selecting the most relevant regions from a set of candidate regions,when there are many candidate regions in the set these methods are inefficient.Inspired by recent success of image captioning by using deep learning methods,in this paper we proposed a framework to understand the referring expressions by multiple steps of reasoning.We present a model for referring expressions comprehension by selecting the most relevant region directly from the image.The core of our model is a recurrent attention network which can be seen as an extension of Memory Network.The proposed model capable of improving the results by multiple computational hops.We evaluate the proposed model on two referring expression datasets:Visual Genome and Flickr30k Entities.The experimental results demonstrate that the proposed model outperform previous state-of-the-art methods both in accuracy and efficiency.We also conduct an ablation experiment to show that the performance of the model is not getting better with the increase of the attention layers.展开更多
提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation...提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation)注意力机制自适应分配各通道权重,提高学习效率。对马里兰大学电池数据集进行预处理,输入电压、电流参数,进行锂电池充放电仿真实验,并搭建锂电池荷电状态实验平台进行储能锂电池充放电实验。结果表明,提出的SOC神经网络估计模型明显优于LSTM、GRU以及PSO-GRU等模型,具有较高的估计精度与应用价值。展开更多
In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by...In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared.展开更多
Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word m...Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word most clearly expressing event occurrence.Thus,current approaches require both annotated triggers as well as event types in training data.Nevertheless,triggers are non-essential in ED,and it is time-wasting for annotators to identify the“most clearly”word from a sentence,particularly in longer sentences.To decrease manual effort,we evaluate event detectionwithout triggers.We propose a novel framework that combines Type-aware Attention and Graph Convolutional Networks(TA-GCN)for event detection.Specifically,the task is identified as a multi-label classification problem.We first encode the input sentence using a novel type-aware neural network with attention mechanisms.Then,a Graph Convolutional Networks(GCN)-based multilabel classification model is exploited for event detection.Experimental results demonstrate the effectiveness.展开更多
Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can signi...Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result.展开更多
The attention mechanism is one of the most important priori knowledge to enhance convolutional neural networks.Most attention mechanisms are bound to the convolutional layer and use local or global contextual informat...The attention mechanism is one of the most important priori knowledge to enhance convolutional neural networks.Most attention mechanisms are bound to the convolutional layer and use local or global contextual information to recalibrate the input.This is a popular attention strategy design method.Global contextual information helps the network to consider the overall distribution,while local contextual information is more general.The contextual information makes the network pay attention to the mean or maximum value of a particular receptive field.Different from the most attention mechanism,this article proposes a novel attention mechanism with the heuristic difference attention module(HDAM).HDAM’s input recalibration is based on the difference between the local and global contextual information instead of the mean and maximum values.At the same time,to make different layers have amore suitable local receptive field sizes and increase the flexibility of the local receptive field design,we use genetic algorithm to heuristically produce local receptive fields.First,HDAM extracts the mean value of the global and local receptive fields as the corresponding contextual information.Then the difference between the global and local contextual information is calculated.Finally,HDAM uses this difference to recalibrate the input.In addition,we use the heuristic ability of genetic algorithm to search for the local receptive field size of each layer.Our experiments on CIFAR-10 and CIFAR-100 show that HDAM can use fewer parameters than other attention mechanisms to achieve higher accuracy.We implement HDAM with the Python library,Pytorch,and the code and models will be publicly available.展开更多
Background A crucial element of human-machine interaction,the automatic detection of emotional states from human speech has long been regarded as a challenging task for machine learning models.One vital challenge in s...Background A crucial element of human-machine interaction,the automatic detection of emotional states from human speech has long been regarded as a challenging task for machine learning models.One vital challenge in speech emotion recognition(SER)is learning robust and discriminative representations from speech.Although machine learning methods have been widely applied in SER research,the inadequate amount of available annotated data has become a bottleneck impeding the extended application of such techniques(e.g.,deep neural networks).To address this issue,we present a deep learning method that combines knowledge transfer and self-attention for SER tasks.Herein,we apply the log-Mel spectrogram with deltas and delta-deltas as inputs.Moreover,given that emotions are time dependent,we apply temporal convolutional neural networks to model the variations in emotions.We further introduce an attention transfer mechanism,which is based on a self-attention algorithm to learn long-term dependencies.The self-attention transfer network(SATN)in our proposed approach takes advantage of attention transfer to learn attention from speech recognition,followed by transferring this knowledge into SER.An evaluation built on Interactive Emotional Dyadic Motion Capture(IEMOCAP)dataset demonstrates the effectiveness of the proposed model.展开更多
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.展开更多
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is pro...How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.展开更多
Automatic text summarization(ATS)plays a significant role in Natural Language Processing(NLP).Abstractive summarization produces summaries by identifying and compressing the most important information in a document.Ho...Automatic text summarization(ATS)plays a significant role in Natural Language Processing(NLP).Abstractive summarization produces summaries by identifying and compressing the most important information in a document.However,there are only relatively several comprehensively evaluated abstractive summarization models that work well for specific types of reports due to their unstructured and oral language text characteristics.In particular,Chinese complaint reports,generated by urban complainers and collected by government employees,describe existing resident problems in daily life.Meanwhile,the reflected problems are required to respond speedily.Therefore,automatic summarization tasks for these reports have been developed.However,similar to traditional summarization models,the generated summaries still exist problems of informativeness and conciseness.To address these issues and generate suitably informative and less redundant summaries,a topic-based abstractive summarization method is proposed to obtain global and local features.Additionally,a heterogeneous graph of the original document is constructed using word-level and topic-level features.Experiments and analyses on public review datasets(Yelp and Amazon)and our constructed dataset(Chinese complaint reports)show that the proposed framework effectively improves the performance of the abstractive summarization model for Chinese complaint reports.展开更多
文摘Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods.
基金This work was supported in part by audio-visual new media laboratory operation and maintenance of Academy of Broadcasting Science,Grant No.200304in part by the National Key Research and Development Program of China(Grant No.2019YFB1406201).
文摘Referring expressions comprehension is the task of locating the image region described by a natural language expression,which refer to the properties of the region or the relationships with other regions.Most previous work handles this problem by selecting the most relevant regions from a set of candidate regions,when there are many candidate regions in the set these methods are inefficient.Inspired by recent success of image captioning by using deep learning methods,in this paper we proposed a framework to understand the referring expressions by multiple steps of reasoning.We present a model for referring expressions comprehension by selecting the most relevant region directly from the image.The core of our model is a recurrent attention network which can be seen as an extension of Memory Network.The proposed model capable of improving the results by multiple computational hops.We evaluate the proposed model on two referring expression datasets:Visual Genome and Flickr30k Entities.The experimental results demonstrate that the proposed model outperform previous state-of-the-art methods both in accuracy and efficiency.We also conduct an ablation experiment to show that the performance of the model is not getting better with the increase of the attention layers.
文摘提出一种基于SABO-GRU-Attention(subtraction average based optimizer-gate recurrent unitattention)的锂电池SOC(state of charge)估计方法。采用基于平均减法优化算法自适应更新GRU神经网络的超参数,融合SE(squeeze and excitation)注意力机制自适应分配各通道权重,提高学习效率。对马里兰大学电池数据集进行预处理,输入电压、电流参数,进行锂电池充放电仿真实验,并搭建锂电池荷电状态实验平台进行储能锂电池充放电实验。结果表明,提出的SOC神经网络估计模型明显优于LSTM、GRU以及PSO-GRU等模型,具有较高的估计精度与应用价值。
基金supported by the Postgraduate Scientific Research Innovation Project of Hunan Province under Grant QL20210212the Scientific Innovation Fund for Postgraduates of Central South University of Forestry and Technology under Grant CX202102043.
文摘In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared.
基金supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ4624)the National Social Science Fund of China(Grant No.20&ZD047)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant No.19A020)the National University of Defense Technology Research Project ZK20-46 and the Young Elite Scientists Sponsorship Program 2021-JCJQ-QT-050.
文摘Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word most clearly expressing event occurrence.Thus,current approaches require both annotated triggers as well as event types in training data.Nevertheless,triggers are non-essential in ED,and it is time-wasting for annotators to identify the“most clearly”word from a sentence,particularly in longer sentences.To decrease manual effort,we evaluate event detectionwithout triggers.We propose a novel framework that combines Type-aware Attention and Graph Convolutional Networks(TA-GCN)for event detection.Specifically,the task is identified as a multi-label classification problem.We first encode the input sentence using a novel type-aware neural network with attention mechanisms.Then,a Graph Convolutional Networks(GCN)-based multilabel classification model is exploited for event detection.Experimental results demonstrate the effectiveness.
文摘Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result.
基金partially supported by the National Natural Science Foundation of China(61876089,61403206,61876185,61902281)the Opening Project of Jiangsu Key Laboratory of Data Science and Smart Software(No.2019DS302)+4 种基金the Natural Science Foundation of Jiangsu Province(BK20141005)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(14KJB520025)the Science and technology program of Ministry of Housing and Urban-Rural Development(2019-K-141)the Entrepreneurial team of sponge City(2017R02002)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The attention mechanism is one of the most important priori knowledge to enhance convolutional neural networks.Most attention mechanisms are bound to the convolutional layer and use local or global contextual information to recalibrate the input.This is a popular attention strategy design method.Global contextual information helps the network to consider the overall distribution,while local contextual information is more general.The contextual information makes the network pay attention to the mean or maximum value of a particular receptive field.Different from the most attention mechanism,this article proposes a novel attention mechanism with the heuristic difference attention module(HDAM).HDAM’s input recalibration is based on the difference between the local and global contextual information instead of the mean and maximum values.At the same time,to make different layers have amore suitable local receptive field sizes and increase the flexibility of the local receptive field design,we use genetic algorithm to heuristically produce local receptive fields.First,HDAM extracts the mean value of the global and local receptive fields as the corresponding contextual information.Then the difference between the global and local contextual information is calculated.Finally,HDAM uses this difference to recalibrate the input.In addition,we use the heuristic ability of genetic algorithm to search for the local receptive field size of each layer.Our experiments on CIFAR-10 and CIFAR-100 show that HDAM can use fewer parameters than other attention mechanisms to achieve higher accuracy.We implement HDAM with the Python library,Pytorch,and the code and models will be publicly available.
基金the National Natural Science Foundation of China(62071330)the National Science Fund for Distinguished Young Scholars(61425017)+3 种基金the Key Program of the National Natural Science Foundation(61831022)the Key Program of the Natural Science Foundation of Tianjin(18JCZDJC36300)the Open Projects Program of the National Laboratory of Pattern Recognition and the Senior Visiting Scholar Program of Tianjin Normal Universitythe Innovative Medicines Initiative 2 Joint Undertaking(115902),which receives support from the European Union's Horizon 2020 research and innovation program and EFPIA.
文摘Background A crucial element of human-machine interaction,the automatic detection of emotional states from human speech has long been regarded as a challenging task for machine learning models.One vital challenge in speech emotion recognition(SER)is learning robust and discriminative representations from speech.Although machine learning methods have been widely applied in SER research,the inadequate amount of available annotated data has become a bottleneck impeding the extended application of such techniques(e.g.,deep neural networks).To address this issue,we present a deep learning method that combines knowledge transfer and self-attention for SER tasks.Herein,we apply the log-Mel spectrogram with deltas and delta-deltas as inputs.Moreover,given that emotions are time dependent,we apply temporal convolutional neural networks to model the variations in emotions.We further introduce an attention transfer mechanism,which is based on a self-attention algorithm to learn long-term dependencies.The self-attention transfer network(SATN)in our proposed approach takes advantage of attention transfer to learn attention from speech recognition,followed by transferring this knowledge into SER.An evaluation built on Interactive Emotional Dyadic Motion Capture(IEMOCAP)dataset demonstrates the effectiveness of the proposed model.
文摘Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.
文摘How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.
基金supported byNationalNatural Science Foundation of China(52274205)and Project of Education Department of Liaoning Province(LJKZ0338).
文摘Automatic text summarization(ATS)plays a significant role in Natural Language Processing(NLP).Abstractive summarization produces summaries by identifying and compressing the most important information in a document.However,there are only relatively several comprehensively evaluated abstractive summarization models that work well for specific types of reports due to their unstructured and oral language text characteristics.In particular,Chinese complaint reports,generated by urban complainers and collected by government employees,describe existing resident problems in daily life.Meanwhile,the reflected problems are required to respond speedily.Therefore,automatic summarization tasks for these reports have been developed.However,similar to traditional summarization models,the generated summaries still exist problems of informativeness and conciseness.To address these issues and generate suitably informative and less redundant summaries,a topic-based abstractive summarization method is proposed to obtain global and local features.Additionally,a heterogeneous graph of the original document is constructed using word-level and topic-level features.Experiments and analyses on public review datasets(Yelp and Amazon)and our constructed dataset(Chinese complaint reports)show that the proposed framework effectively improves the performance of the abstractive summarization model for Chinese complaint reports.