期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Early Detection of Heartbeat from Multimodal Data Using RPA Learning with KDNN-SAE
1
作者 A.K.S.Saranya T.Jaya 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期545-562,共18页
Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generali... Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generalization problem thus;the effectiveness and robustness of the traditional heartbeat detector methods cannot be guaranteed.In contrast,this work proposes a heartbeat detector Krill based Deep Neural Network Stacked Auto Encoders(KDNN-SAE)that computes the disease before the exact heart rate by combining features from multiple ECG Signals.Heartbeats are classified independently and multiple signals are fused to estimate life threatening conditions earlier without any error in classification of heart beat.This work contained Training and testing stages,in the preparation part at first the Adaptive Filter Enthalpy-based Empirical Mode Decomposition(EMD)is utilized to eliminate the motion artifact in the signal.At that point,the robotic process automation(RPA)learning part extracts the effective features are extracted,and normalized the value of the feature then estimated utilizing the RPA loss function.At last KDNN-SAE prepared training for the data stored in the dataset.In the subsequent stage,input signal compute motion artifact and RPA Learning the evaluation part determines the detection of Heartbeat.So early diagnosis of heart failures is an essential factor.The results of the experiments show that our proposed method has a high score outcome of 0.9997.Comparable to the CIF,which reaches 0.9990.The CNN and Artificial Neural Network(ANN)had less score 0.95115 and 0.90147. 展开更多
关键词 Deep neural network krill herd optimization stack auto-encoder adaptive filter enthalpy based empirical mode decomposition robotic process automation
下载PDF
ARM+FPGA双核计算的配电自动化终端设计
2
作者 郑军生 杨俊哲 +1 位作者 许文秀 吴宏伟 《自动化仪表》 CAS 2024年第1期59-63,共5页
为了提高配电自动化终端数据信息自动化分析能力,设计了基于ARM+现场可编程门阵列(FPGA)双核计算的配电自动化终端。为了提高模块计算能力,在模块中构建了堆叠式自动编码器-神经网络(SAE-NN)深度学习算法模型。在常规堆叠式自动编码器(S... 为了提高配电自动化终端数据信息自动化分析能力,设计了基于ARM+现场可编程门阵列(FPGA)双核计算的配电自动化终端。为了提高模块计算能力,在模块中构建了堆叠式自动编码器-神经网络(SAE-NN)深度学习算法模型。在常规堆叠式自动编码器(SAE)深度学习模型基础上融合神经网络(NN)模型,应用过程中改善传统NN对分层节点数目的限制。试验结果表明,所设计终端随着系统运行能达到95%以上的精度,而现有SAE模型仅达到85%左右的精度。通过与文献[1]和文献[2]方法的对比可知,所设计终端有较高的调度能力。该设计显著提高了配电网数据信息的分析精度,大幅提升了电网应用对数据信息处理的准确度和效率。 展开更多
关键词 配电自动化终端 现场可编程门阵列 堆叠式自动编码器 神经网络 数据调试 分析精度 调度能力
下载PDF
Prediction Model of Aircraft Icing Based on Deep Neural Network 被引量:13
3
作者 YI Xian WANG Qiang +1 位作者 CHAI Congcong GUO Lei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期535-544,共10页
Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed un... Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis. 展开更多
关键词 aircraft icing ice shape prediction deep neural network deep belief network stacked auto-encoder
下载PDF
An Effective Fault Diagnosis Method for Aero Engines Based on GSA-SAE 被引量:3
4
作者 CUI Jianguo TIAN Yan +4 位作者 CUI Xiao TANG Xiaochu WANG Jinglin JIANG Liying YU Mingyue 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第5期750-757,共8页
The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefor... The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefore,an effective fault diagnosis method for aero engines based on the gravitational search algorithm and the stack autoencoder(GSA-SAE)is proposed,and the fault diagnosis technology of a turbofan engine is studied.Firstly,the data of 17 parameters,including total inlet air temperature,high-pressure rotor speed,low-pressure rotor speed,turbine pressure ratio,total inlet air temperature of high-pressure compressor and outlet air pressure of high-pressure compressor and so on,are preprocessed,and the fault diagnosis model architecture of SAE is constructed.In order to solve the problem that the best diagnosis effect cannot be obtained due to manually setting the number of neurons in each hidden layer of SAE network,a GSA optimization algorithm for the SAE network is proposed to find and obtain the optimal number of neurons in each hidden layer of SAE network.Furthermore,an optimal fault diagnosis model based on GSA-SAE is established for aero engines.Finally,the effectiveness of the optimal GSA-SAE fault diagnosis model is demonstrated using the practical data of aero engines.The results illustrate that the proposed fault diagnosis method effectively solves the problem of the poor fault diagnosis result because of manually setting the number of neurons in each hidden layer of SAE network,and has good fault diagnosis efficiency.The fault diagnosis accuracy of the GSA-SAE model reaches 98.222%,which is significantly higher than that of SAE,the general regression neural network(GRNN)and the back propagation(BP)network fault diagnosis models. 展开更多
关键词 aero engines fault diagnosis optimization algorithm of gravitational search algorithm(GSA) stack autoencoder(sae)network
下载PDF
Fault diagnosis method of track circuit based on KPCA-SAE 被引量:2
5
作者 JIN Zuchen DONG Yu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期89-95,共7页
At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to an... At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to analyze the data.Therefore,we introduce kernel principal component analysis and stacked auto-encoder network(KPCA-SAD)into the fault diagnosis of ZPW-2000 track circuit.According to the working principle and fault characteristics of track circuit,a fault diagnosis model of KPCA-SAE network is established.The relevant parameters of key components recorded in the data collected by field staff are used as the fault feature parameters.The KPCA method is used to reduce the dimension and noise of fault document matrix to avoid information redundancy.The SAE network is trained by the processed fault data.The model parameters are optimized overall by using back propagation(BP)algorithm.The KPCA-SAE model is simulated in Matlab platform and is finally proved to be effective and feasible.Compared with the traditional method of artificially analyzing fault data and other intelligent algorithms,the KPCA-SAE based classifier has higher fault identification accuracy. 展开更多
关键词 ZPW-2000 track circuit fault diagnosis stacked auto-encoder(sae) kernel principal component analysis(KPCA)
下载PDF
核电站智能故障预警与诊断方案研究 被引量:1
6
作者 王梦月 李鸣谦 万欣 《自动化仪表》 CAS 2023年第2期65-68,共4页
为了解决核电站故障识别难度高、工作量大的问题,从核电站对故障预警和诊断的功能需求出发,通过分析多种智能算法和核电站应用场景的适配性,提出了基于卷积神经网络(CNN)、堆叠自编码(SAE)网络、故障树分析(FTA)等先进技术的核电站智能... 为了解决核电站故障识别难度高、工作量大的问题,从核电站对故障预警和诊断的功能需求出发,通过分析多种智能算法和核电站应用场景的适配性,提出了基于卷积神经网络(CNN)、堆叠自编码(SAE)网络、故障树分析(FTA)等先进技术的核电站智能故障预警和诊断功能模块设计方案。该方案将提升核电站智能化水平,实现智能化、自动化的故障监视和诊断,为运行人员提供决策支持,减轻运行人员工作负担,提高故障处理的安全性和时效性。 展开更多
关键词 核电站 故障预警 故障诊断 卷积神经网络 堆叠自编码网络 故障树分析
下载PDF
基于栈式自编码器的磁探测电阻抗成像算法研究 被引量:8
7
作者 陈瑞娟 戚昊峰 +2 位作者 李炳南 王慧泉 王金海 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第1期257-264,共8页
针对目前磁探测电阻抗成像算法图像重建分辨率不高、精确度低的问题,提出了一种基于栈式自编码(SAE)神经网络的磁探测电阻抗成像算法。使用方形成像体进行仿真实验,通过训练样本建立SAE神经网络模型,确定神经元权重和偏置值。利用该网... 针对目前磁探测电阻抗成像算法图像重建分辨率不高、精确度低的问题,提出了一种基于栈式自编码(SAE)神经网络的磁探测电阻抗成像算法。使用方形成像体进行仿真实验,通过训练样本建立SAE神经网络模型,确定神经元权重和偏置值。利用该网络模型重建成像体内部的电导率分布;并在异质体中心位置、算法的抗噪性能等方面将重建结果与基于Levenberg-Marquardt算法的反向传播神经网络的重建结果进行对比。结果表明栈式自编码神经网络算法显著提高了磁探测电阻抗成像的重建精度、抗噪性能。最后,通过仿体实验验证了SAE算法的可行性。根据实际测得的磁场,使用神经网络算法重建电导率,准确定位异质体位置。SAE神经网络算法的提出对于磁探测电阻抗成像技术的广泛应用具有重要意义。 展开更多
关键词 磁探测电阻抗成像 逆问题 栈式自编码 反向传播神经网络
下载PDF
基于堆栈式自动编码器的加密流量识别方法 被引量:17
8
作者 王攀 陈雪娇 《计算机工程》 CAS CSCD 北大核心 2018年第11期140-147,153,共9页
基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学... 基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学习,实现对加密应用流量的准确识别。考虑到样本数据集的类别不平衡性对分类精度的影响,采用SMOTE过抽样方法对不平衡数据集进行处理。实验结果表明,该方法各项性能指标均优于MLP加密流量识别方法,识别精确度和召回率以及F1-Score均可达到99%。 展开更多
关键词 加密流量识别 深度学习 堆栈式自动编码器 流量分类 多层感知机 卷积神经网络
下载PDF
基于数据均衡的增进式深度自动图像标注 被引量:7
9
作者 周铭柯 柯逍 杜明智 《软件学报》 EI CSCD 北大核心 2017年第7期1862-1880,共19页
自动图像标注是一个包含众多标签、多样特征的富有挑战性的研究问题,是新一代图像检索与图像理解的关键步骤.针对传统的基于浅层机器学习标注算法标注效率低下、难以处理复杂分类任务的问题,提出了基于栈式自动编码器(stacked auto-enco... 自动图像标注是一个包含众多标签、多样特征的富有挑战性的研究问题,是新一代图像检索与图像理解的关键步骤.针对传统的基于浅层机器学习标注算法标注效率低下、难以处理复杂分类任务的问题,提出了基于栈式自动编码器(stacked auto-encoder,简称SAE)的自动图像标注算法,提升了标注效率和标注效果.主要针对图像标注数据不平衡问题,提出两种解决思路:对于标注模型,提出一种增强训练中低频标签的平衡栈式自动编码器(B-SAE),较好地改善了中低频标签的标注效果.并在该模型的基础上提出一种分组强化训练B-SAE子模型的鲁棒平衡栈式自动编码器算法(RB-SAE),提升了标注的稳定性,从而保证模型本身具有较强的处理不平衡数据的能力;对于标注过程,以未知图像作为出发点,首先构造未知图像的局部均衡数据集,并判定该图像的高低频属性以决定不同的标注过程,局部语义传播算法(SP)标注中低频图像,RB-SAE算法标注高频图像,形成属性判别的标注框架(ADA),保证了标注过程具有较强的应对不平衡数据的能力,从而提升整体图像标注效果.通过在3个公共数据集上进行实验验证,结果表明,该方法在许多指标上相比以往方法均有较大提高. 展开更多
关键词 sae(stacked auto-encoder) 深度学习 数据均衡 图像标注 语义传播
下载PDF
基于栈式自编码BP神经网络预测水体亚硝态氮浓度模型 被引量:4
10
作者 付泰然 刘广鑫 +4 位作者 万全元 吴霆 赵丽娟 林蠡 杨灵 《水产学报》 CAS CSCD 北大核心 2019年第4期958-967,共10页
亚硝态氮对于水产养殖动物具有毒性,对于其含量的及时监控非常重要。基于光谱法和电极法设计的亚硝态氮传感器价格昂贵,难以大面积推广,因此急需研发一种能快速预测养殖水体亚硝态氮的模型。实验通过实验室构建的水质在线检测系统测定... 亚硝态氮对于水产养殖动物具有毒性,对于其含量的及时监控非常重要。基于光谱法和电极法设计的亚硝态氮传感器价格昂贵,难以大面积推广,因此急需研发一种能快速预测养殖水体亚硝态氮的模型。实验通过实验室构建的水质在线检测系统测定水体中温度、pH、溶解氧、氧化还原电位4个参数,同时用α-萘胺比色法测定水体中亚硝态氮的浓度,从4种参数中选取与亚硝态氮浓度相关的参数作为预测模型的关联变量。水质参数数据及亚硝态氮浓度数据分别经预处理后作为原始数据用于SAE神经网络的训练,训练方法采用无监督逐层贪婪训练法,用学习到的特征监督训练SAE-BP神经网络,利用反向传播算法(BP)优化模型。训练得到结构为4-5-4-3-1的SAE-BP神经网络模型,建立的神经网络模型对实验数据预测的拟合优度R2为0.95,预测结果的均方根误差RMSEP为0.099 71。研究表明,亚硝态氮预测模型可以较为精准地预测水体中亚硝态氮的浓度。本模型将为开发在线快速监测养殖水体亚硝态氮浓度提供新的思路。 展开更多
关键词 亚硝态氮 栈式自编码 sae-BP神经网络 预测模型
下载PDF
深度学习在电力负荷预测中的应用 被引量:35
11
作者 张建寰 吉莹 陈立东 《自动化仪表》 CAS 2019年第8期8-12,17,共6页
针对电力负荷预测中存在的随机性、不确定性的问题,结合深度学习算法具有很强的自适应感知能力等特点,采用目前较为主流的深度学习方法,如长短时记忆(LSTM)网络、门循环单元(GRU)神经网络和栈式自编码器(SAE),分别研究其应用于电力负荷... 针对电力负荷预测中存在的随机性、不确定性的问题,结合深度学习算法具有很强的自适应感知能力等特点,采用目前较为主流的深度学习方法,如长短时记忆(LSTM)网络、门循环单元(GRU)神经网络和栈式自编码器(SAE),分别研究其应用于电力负荷预测时的效果。研究发现,将历史负荷数据作为三种深度学习预测模型的输入时,三种预测模型的负荷预测精度指标评估结果各有不同。因此,为了全面评估三种预测模型的预测效果,提出将不同时间段内的相同历史负荷数据作为预测模型输入对比各模型的负荷预测精度,从中找出最佳的预测模型。仿真结果验证了三种预测模型在电力负荷预测应用中的可行性,且发现在单输入因素时LSTM模型的预测精度相对较高。因此,在后续研究中,可以考虑以LSTM预测模型作为基础预测模型,结合更多的负荷影响因素进行改进,以提高负荷预测精度。 展开更多
关键词 深度学习 长短时记忆 门循环单元 循环神经网络 栈式自编码器 负荷预测 预测精度
下载PDF
基于堆栈自编码网络的铣刀磨损特征提取方法
12
作者 王明微 高静 +3 位作者 李智昂 周竞涛 蔡闻峰 龚菊贤 《上海航天(中英文)》 CSCD 2022年第5期79-87,共9页
针对传统切削数据人工提取的特征主观性和盲目性强、特征提取过程耗时且提取质量难以保证等问题,提出一种基于堆栈自编码网络(SAE)的切削信号数据特征提取方法,构建了由3个自动编码器(AE)组成的SAE网络。前一个AE无监督训练后得到隐藏... 针对传统切削数据人工提取的特征主观性和盲目性强、特征提取过程耗时且提取质量难以保证等问题,提出一种基于堆栈自编码网络(SAE)的切削信号数据特征提取方法,构建了由3个自动编码器(AE)组成的SAE网络。前一个AE无监督训练后得到隐藏层特征,作为下一个AE的输入,最后整体利用反向传播算法进行有监督微调,从而得到更优的特征表达。从基于SAE的数据重构性能分析和加工信号特征主成分分析2个层面,对切削信号特征提取的优劣进行评估。实例验证说明,相比于传统手工提取特征的方法,所提方法在压缩信号的特征提取方面表现出明显的优势,进一步说明了SAE特征提取的有效性。 展开更多
关键词 切削加工 特征提取 堆栈自编码网络(sae) 磨损预测
下载PDF
Deep learning model for estimating the mechanical properties of concrete containing silica fume exposed to high temperatures 被引量:1
13
作者 Harun TANYILDIZI Abdulkadir SENGUR +1 位作者 Yaman AKBULUT Murat SAHtNa 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第6期1316-1330,共15页
In this study,the deep learning models for estimating the mechanical properties of concrete containing silica fume subjected to high temperatures were devised.Silica fume was used at concentrations of 0%,5%,10%,and 20... In this study,the deep learning models for estimating the mechanical properties of concrete containing silica fume subjected to high temperatures were devised.Silica fume was used at concentrations of 0%,5%,10%,and 20%.Cube specimens(100 mm×100 mm×100 mm)were prepared for testing the compressive strength and ultrasonic pulse velocity.They were cured at 20℃zb2℃ in a standard cure for 7,28,and 90 d.After curing,they were subjected to temperatures of 20℃,200℃,400℃,600℃,and 800℃.Two well-known deep learning approaches,i.e.,stacked autoencoders and long short-term memory(LSTM)networks,were used for forecasting the compressive strength and ultrasonic pulse velocity of concrete containing silica fume subjected to high temperatures.The forecasting experiments were carried out using MATLAB deep learning and neural network tools,respectively.Various statistical measures were used to validate the prediction performances of both the approaches.This study found that the LSTM network achieved better results than the stacked autoencoders.In addition,this study found that deep learning,which has a very good prediction ability with little experimental data,was a convenient method for civil engineering. 展开更多
关键词 concrete high temperature strength properties deep learning stacked auto-encoders LSTM network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部