期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fault Diagnosis of Wind Turbine Generator with Stacked Noise Reduction Autoencoder Based on Group Normalization
1
作者 Sihua Wang Wenhui Zhang +2 位作者 Gaofei Zheng Xujie Li Yougeng Zhao 《Energy Engineering》 EI 2022年第6期2431-2445,共15页
In order to improve the condition monitoring and fault diagnosis of wind turbines,a stacked noise reduction autoencoding network based on group normalization is proposed in this paper.The network is based on SCADA dat... In order to improve the condition monitoring and fault diagnosis of wind turbines,a stacked noise reduction autoencoding network based on group normalization is proposed in this paper.The network is based on SCADA data of wind turbine operation,firstly,the group normalization(GN)algorithm is added to solve the problems of stack noise reduction autoencoding network training and slow convergence speed,and the RMSProp algorithm is used to update the weight and the bias of the autoenccoder,which further optimizes the problem that the loss function swings too much during the update process.Finally,in the last layer of the network,the softmax activation function is used to classify the results,and the output of the network is transformed into a probability distribution.The selected wind turbine SCADA data was substituted into the pre-improved and improved stacked denoising autoencoding(SDA)networks for comparative training and verification.The results show that the stacked denoising autoencoding network based on group normalization is more accurate and effective for wind turbine condition monitoring and fault diagnosis,and also provides a reference for wind turbine fault identification. 展开更多
关键词 Wind farm wind turbine group normalization stack noise reduction autoencoding fault diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部