期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Predicting the Antigenic Variant of Human Influenza A(H3N2) Virus with a Stacked Auto-Encoder Model
1
作者 Zhiying Tan Kenli Li +1 位作者 Taijiao Jiang Yousong Peng 《国际计算机前沿大会会议论文集》 2017年第2期71-73,共3页
The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic ... The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic variants in time. Here, we built a stacked auto-encoder (SAE) model for predicting the antigenic variant of human influenza A(H3N2) viruses based on the hemagglutinin (HA) protein sequences. The model achieved an accuracy of 0.95 in five-fold cross-validations, better than the logistic regression model did. Further analysis of the model shows that most of the active nodes in the hidden layer reflected the combined contribution of multiple residues to antigenic variation. Besides, some features (residues on HA protein) in the input layer were observed to take part in multiple active nodes, such as residue 189, 145 and 156, which were also reported to mostly determine the antigenic variation of influenza A(H3N2) viruses. Overall,this work is not only useful for rapidly identifying antigenic variants in influenza prevention, but also an interesting attempt in inferring the mechanisms of biological process through analysis of SAE model, which may give some insights into interpretation of the deep learning 展开更多
关键词 stacked auto-encoder Antigenic variatION nfluenza Machine learning
下载PDF
基于代价敏感堆叠变分自动编码器的暂态稳定评估方法 被引量:29
2
作者 王怀远 陈启凡 《中国电机工程学报》 EI CSCD 北大核心 2020年第7期2213-2220,共8页
机器学习算法在训练过程中,难免会遇到样本不平衡的情况,同时,对于电力系统来说稳定样本与不稳定样本的误分类代价是不同的,因此提出一种基于代价敏感堆叠变分自动编码器(stacked variational auto-encoder,SVAE)的电力系统暂态稳定评... 机器学习算法在训练过程中,难免会遇到样本不平衡的情况,同时,对于电力系统来说稳定样本与不稳定样本的误分类代价是不同的,因此提出一种基于代价敏感堆叠变分自动编码器(stacked variational auto-encoder,SVAE)的电力系统暂态稳定评估方法。在模型训练过程中,通过改变误分类结果对模型参数调整的权重系数,修正了判别模型在不平衡样本训练过程中的倾向性,并提高了模型全局准确率。在此基础上,进一步提高不稳定样本的权重系数,有效加强了模型对不稳定样本的拟合程度,降低了不稳定样本的误判情况。在IEEE-39节点系统下的仿真结果说明,在不平衡样本情况下,所提方法可以改善判别结果的倾向性;在平衡样本情况下,通过误分类代价的设定可以有效降低不稳定样本的误判情况。 展开更多
关键词 深度学习 堆叠变分自动编码器(svae) 暂态稳定性 代价敏感 不平衡样本
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部