期刊文献+
共找到128篇文章
< 1 2 7 >
每页显示 20 50 100
Cooperative structure of Li/Ni mixing and stacking faults for achieving high-capacity Co-free Li-rich oxides
1
作者 Zhen Wu Yu-Han Zhang +9 位作者 Hao Wang Zewen Liu Xudong Zhang Xin Dai Kunyang Zou Xiaoming Lou Xuechen Hu Lijing Ma Yan Liu Yongning Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期315-324,I0007,共11页
Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electroche... Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electrochemical activity,leading to diminished capacity and voltage performance.Herein,we introduce a Co-free LLO,Li_(1.167)Ni_(0.222)Mn_(0.611)O_(2)(Cf-L1),which features a cooperative structure of Li/Ni mixing and stacking faults.This structure regulates the crystal and electronic structures,resulting in a higher discharge capacity of 300.6 mA h g^(-1)and enhanced rate capability compared to the typical Co-free LLO,Li_(1.2)Ni_(0.2)Mn_(0.6)O_(2)(Cf-Ls).Density functional theory(DFT)indicates that Li/Ni mixing in LLOs leads to increased Li-O-Li configurations and higher anionic redox activities,while stacking faults further optimize the electronic interactions of transition metal(TM)3d and non-bonding O 2p orbitals.Moreover,stacking faults accommodate lattice strain,improving electrochemical reversibility during charge/discharge cycles,as demonstrated by the in situ XRD of Cf-L1 showing less lattice evolution than Cf-Ls.This study offers a structured approach to developing Co-free LLOs with enhanced capacity,voltage,rate capability,and cyclability,significantly impacting the advancement of the next-generation Li-ion batteries. 展开更多
关键词 Co-free Li-rich oxides Li/Ni mixing stacking faults Electronic structure
下载PDF
Correlation of work function and stacking fault energy through Kelvin probe force microscopy and nanohardness in diluteα-magnesium
2
作者 Yigit Türe Ali Arslan Kaya +2 位作者 Hüseyin Aydin Jiang Peng Servet Turan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期237-250,共14页
Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work ... Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work Function'(ΔWF)measured via Kelvin Probe Force Microscopy(KPFM),as a property directly affected by interatomic bond types,i.e.the electronic structure,nanoindentation measurements,and Stacking Fault Energy values reported in the literature.It was shown that the nano-hardness of the solid-solutionα-Mg phase changed in the order of Mg-Ca>Mg-Sr>Mg-Ba.Thus,it was shown,by also considering the nano-hardness levels,that SFE of a solid-solution is closely correlated with its‘Work Function'level.Nano-hardness measurements on the eutectics andΔWF difference between eutectic phases enabled an assessment of the relative bond strength and the pertinent electronic structures of the eutectics in the three alloys.Correlation withΔWF and at least qualitative verification of those computed SFE values with some experimental measurement techniques were considered important as those computational methods are based on zero Kelvin degree,relatively simple atomic models and a number of assumptions.As asserted by this investigation,if the results of measurement techniques can be qualitatively correlated with those of the computational methods,it can be possible to evaluate the electronic structures in alloys,starting from binary systems,going to ternary and then multi-elemental systems.Our investigation has shown that such a qualitative correlation is possible.After all,the SFE values are not treated as absolute values but rather become essential in comparative investigations when assessing the influences of alloying elements at a fundamental level,that is,free electron density distributions.Our study indicated that the principles of‘electronic metallurgy'in developing multi-elemental alloy systems can be followed via practical experimental methods,i.e.ΔWF measurements using KPFM and nanoindentation. 展开更多
关键词 Mg alloys Dilute alloys Work function stacking fault energy Kelvin probe force microscopy Short range order Miedema NANOINDENTATION EUTECTICS
下载PDF
Solute atom segregation to I1 stacking fault and its bounding partial dislocations in a Mg–Bi alloy
3
作者 Cong He Yong Zhang +2 位作者 Zhiqiao Li Houwen Chen Jian-Feng Nie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3135-3141,共7页
Stacking faults(SFs)and the interaction between solute atoms and SFs in a Mg–Bi alloy are investigated using aberration-corrected scanning transmission electron microscopy.It is found that abundant I_(1)SFs are gener... Stacking faults(SFs)and the interaction between solute atoms and SFs in a Mg–Bi alloy are investigated using aberration-corrected scanning transmission electron microscopy.It is found that abundant I_(1)SFs are generated after cold rolling and are mainly distributed inside{1012}twins.After aging treatment,the formation of single-layer and three-layer Bi atom segregation in the vicinity of I_(1)fault are clearly observed.Bi segregation also occurs at the 1/6<2203>bounding Frank partial dislocation cores.The segregation behaviors in I_(1)fault and Frank dislocations are discussed and rationalized using first-principles calculations. 展开更多
关键词 Mg alloys Suzuki segregation stacking fault Frank partial dislocation
下载PDF
Enhancing the strain hardening and ductility of Mg-Y alloy by introducing stacking faults 被引量:10
4
作者 Kang Wei Lirong Xiao +6 位作者 Bo Gao Lei Li Yi Liu Zhigang Ding Wei Liu Hao Zhou Yonghao Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1221-1227,共7页
Due to the insufficient slip systems,Mg and its alloys exhibit poor ductility during plastic deformation at room temperature.To solve this problem,alloying is considered as a most effective method to improve the ducti... Due to the insufficient slip systems,Mg and its alloys exhibit poor ductility during plastic deformation at room temperature.To solve this problem,alloying is considered as a most effective method to improve the ductility of Mg alloys,which attracts wide attentions of industries.However,it is still a challenge to understand the ductilization mechanism,because of the complicated alloying elements and their interactions with Mg matrix.In this work,pure Mg and Mg-Y alloys were comparatively studied to investigate the effect of Y addition on microstructure evolution and mechanical properties.A huge increase of uniform elongation,from 5.3%to 20.7%,was achieved via only 3 wt%addition of yttrium.TEM results revealed that the only activated slip system in pure Mg was basalslip,led to its poor ductility at room temperature.In contrast,a large number of stacking faults and non-basal dislocations with<c>component were observed in the deformed Mg-Y alloy,which was proposed as the main reason for significant improvement of strain hardening and ductility.High resolution TEM indicated that most of the stacking faults were II and 12 intrinsic faults,which played a critical role in improving the ductility of Mg-Y alloy.Addition of Y into Mg alloy decreased the stacking fault energy,which induced high density stacking faults in the grain interior. 展开更多
关键词 Magnesium alloys DUCTILITY stacking faults Non-basal slip Transmission electron microscopy
下载PDF
Corrosion behavior of Mg-3Gd-1Zn-0.4Zr alloy with and without stacking faults 被引量:6
5
作者 Xiaobo Zhang Jianwei Dai +2 位作者 Ruifeng Zhang Zhixin Ba Nick Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第2期240-248,共9页
To develop biodegradable magnesium alloy with desirable corrosion properties,a low Gd-containing Mg-3Gd-1Zn-0.4Zr(wt%,GZ31K)alloy was prepared.The as-cast ingot was solution treated and then hot extruded.Microstructur... To develop biodegradable magnesium alloy with desirable corrosion properties,a low Gd-containing Mg-3Gd-1Zn-0.4Zr(wt%,GZ31K)alloy was prepared.The as-cast ingot was solution treated and then hot extruded.Microstructures were characterized by scanning electron microscopy(SEM).Corrosion behavior of the alloy under each condition was studied by hydrogen evolution and quasi in-situ corrosion methods.It has been found that the as-cast alloy is composed ofα-Mg,stacking faults(SFs)at the outer edge of the matrix grains,and eutectic phase along the grain boundaries.After solution treatment,the SFs disappear and precipitates rich in Zn and Zr elements form in the grain interior and boundaries.The microstructure is significantly refined after extrusion.Hydrogen evolution tests show that the as-cast alloy exhibits the best corrosion resistance,and the solution-treated alloy has the worst corrosion resistance.Corrosion rate of the alloy under each condition decreases first and then increases with prolonging immersion time.Corrosion experiments demonstrate thatα-Mg was corroded preferentially,the eutectic phase and precipitates exhibit better corrosion resistance.The as-extruded alloy demonstrates uniform corrosion due to fine and homogeneous microstructure. 展开更多
关键词 Magnesium alloys stacking faults Corrosion resistance Uniform corrosion
下载PDF
Effects of Nd on microstructure and mechanical properties of as-cast Mg-12Gd-2Zn-xNd-0.4Zr alloys with stacking faults 被引量:3
6
作者 Lixin Hong Rongxiang Wang Xiaobo Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第8期1570-1577,共8页
In order to study the effects of Nd addition on microstructure and mechanical properties of Mg-Gd-Zn-Zr alloys,the microstruc-ture and mechanical properties of the as-cast Mg-12Gd-2Zn-xNd-0.4Zr(x=0,0.5wt%,and 1wt%)all... In order to study the effects of Nd addition on microstructure and mechanical properties of Mg-Gd-Zn-Zr alloys,the microstruc-ture and mechanical properties of the as-cast Mg-12Gd-2Zn-xNd-0.4Zr(x=0,0.5wt%,and 1wt%)alloys were investigated by using optical microscope,scanning electron microscope,X-ray diffractometer,nano indentation tester,microhardness tester,and tensile testing machine.The results show that the microstructures mainly consist ofα-Mg matrix,eutectic phase,and stacking faults.The addition of Nd plays a significant role in grain refinement and uniform microstructure.The tensile yield strength and microhardness increase but the compression yield strength decreases with increasing Nd addition,leading to weakening tension-compression yield asymmetry in reverse of the Mg-12Gd-2Zn-xNd-0.4Zr alloys.The highest ultimate tensile strength(194 MPa)and ultimate compression strength(397 MPa)are obtained with 1wt%Nd addition of the alloy. 展开更多
关键词 magnesium alloy NEODYMIUM microstructure stacking fault mechanical properties
下载PDF
Effects of twin and stacking faults on the deformation behaviors of Al nanowires under tension loading 被引量:1
7
作者 安敏荣 宋海洋 苏锦芳 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期349-354,共6页
The effects of twin spacing and temperature on the deformation behavior of nanotwinned Al under tensile loading are investigated using a molecular dynamic(MD) simulation method.The result shows that the yield streng... The effects of twin spacing and temperature on the deformation behavior of nanotwinned Al under tensile loading are investigated using a molecular dynamic(MD) simulation method.The result shows that the yield strength of nanotwinned Al decreases with the increase of twin spacing,which is related to the repulsive force between twin boundary and the dislocation.The result also shows that there is no strain-hardening at the yield point.On the contrary,the stress is raised by strain hardening in the plastic stage.In addition,we also investigate the effects of stacking fault thickness and temperature on the yield strength of the Al nanowire.The simulation results indicate that the stacking fault may strengthen the Al nanowire when the thickness of the stacking fault is below a critical value. 展开更多
关键词 molecular dynamic simulation deformation twin stacking fault
下载PDF
Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
8
作者 王甫 孙彦东 +2 位作者 邹宇 徐贲 付宝勤 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期373-380,共8页
Stacking faults(SFs)are often present in silicon carbide(SiC)and affect its thermal and heat-transport properties.However,it is unclear how SFs influence thermal transport.Using non-equilibrium molecular dynamics and ... Stacking faults(SFs)are often present in silicon carbide(SiC)and affect its thermal and heat-transport properties.However,it is unclear how SFs influence thermal transport.Using non-equilibrium molecular dynamics and lattice dynamics simulations,we studied phonon transport in SiC materials with an SF.Compared to perfect SiC materials,the SF can reduce thermal conductivity.This is caused by the additional interface thermal resistance(ITR)of SF,which is difficult to capture by the previous phenomenological models.By analyzing the spectral heat flux,we find that SF reduces the contribution of low-frequency(7.5 THz-12 THz)phonons to the heat flux,which can be attributed to SF reducing the phonon lifetime and group velocity,especially in the low-frequency range.The SF hinders phonon transport and results in an effective interface thermal resistance around the SF.Our results provide insight into the microscopic mechanism of the effect of defects on heat transport and have guiding significance for the regulation of the thermal conductivity of materials. 展开更多
关键词 silicon carbide stacking fault thermal conductivity interface thermal resistance phonon transport spectral heat flux
下载PDF
Unusual F_(3)stacking fault in magnesium
9
作者 Y.Yue S.L.Yang +1 位作者 C.C.Wu J.F.Nie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2404-2428,共25页
An unusual F_(3)basal stacking fault resulting from twin-dislocation interaction in magnesium is observed in molecular dynamics simulation.The F_(3)fault is produced in the twin lattice from the interaction between a ... An unusual F_(3)basal stacking fault resulting from twin-dislocation interaction in magnesium is observed in molecular dynamics simulation.The F_(3)fault is produced in the twin lattice from the interaction between a migrating(1012)twin boundary and a partial dislocation of either a prismatic<c>edge,or a prismatic<c+a>mixed dislocation in the matrix.The condition is that the partial dislocation needs to have a negative sign and lie on a plane intersecting a compression site of the twin boundary.The F_(3)fault can also be generated when a positive basal<a>mixed dislocation in the twin lattice,with slip plane intersecting a compression site of the twin boundary,interacts with a basal-prismatic twinning disconnection.The F_(3)fault comprises two I_(1) faults that have the same character but are separated by two basal layers.It has one end connected to the twin boundary,and the other end bounded by a lattice defect with a Burgers vector identical to that of a 30°Shockley partial dislocation.The formation frequency of the F_(3)fault is higher at a lower shear stress(below∼400 MPa)and/or a lower temperature(100 K and 200 K).The F_(3)fault can decompose into a glissile 30°Shockley and a T_(2) fault at a temperature above∼400 K.The relationships between the F_(3)fault and other types of basal stacking faults such as I_(2),T_(2) or paired I_(1) faults that are separated by multiple basal layers are discussed. 展开更多
关键词 MAGNESIUM Basal stacking fault F3 fault Twin-dislocation interactions
下载PDF
Effect of stacking fault energy on mechanical properties of ultrafine-grain Cu and Cu-Al alloy processed by cold-rolling 被引量:7
10
作者 伞星源 梁晓光 +2 位作者 程莲萍 沈黎 朱心昆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期819-824,共6页
Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurem... Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength. 展开更多
关键词 CU Cu alloys COLD-ROLLING tensile tests stacking fault energy
下载PDF
First-principles study of stacking fault energies in Ni_3Al intermetallic alloys 被引量:5
11
作者 温玉锋 孙坚 黄健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期661-664,共4页
The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking f... The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking fault(CSF) energies of the binary Ni3Al alloys with different Al contents and the ternary Ni3Al intermetallic alloys with addition of alloying elements,such as Pd,Pt,Ti,Mo,Ta,W and Re.The results show that the energies of SISF and CSF increase significantly with increase of Al contents in Ni3Al.Addition of Pd and Pt occupying the Ni sublattices does not change the SISF and CSF energies of Ni3Al markedly in comparison with the Ni-23.75Al alloy.While addition of alloying elements,such as Ti,Mo,Ta,W and Re,occupying the Al sublattices dramatically increases the SISF and CSF energies of Ni3Al.The results suggest that the energies of SISF and CSF are dependent both on the Al contents and on the site occupancy of the ternary alloying element in Ni3Al intermetallic alloys. 展开更多
关键词 NI3AL superlattice intrinsic stacking fault complex stacking fault alloying element FIRST-PRINCIPLES
下载PDF
Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels
12
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +3 位作者 Saeed Sadeghpour Milad Zolfipour Aghdam Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2182-2188,共7页
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare... The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range. 展开更多
关键词 austenitic stainless steels mechanical behavior stacking fault energy METASTABILITY mechanical twinning
下载PDF
Temperature-jump tensile tests to induce optimized TRIP/TWIP effect in a metastable austenitic stainless steel
13
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +2 位作者 Saeed Sadeghpour Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2025-2036,共12页
In the present work,plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200℃ in AISI 304L austenitic stainless steel,aiming to optimize the strength-du... In the present work,plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200℃ in AISI 304L austenitic stainless steel,aiming to optimize the strength-ductility synergy.It was shown that the combined twinning-induced plasticity(TWIP)/transformation-induced plasticity(TRIP)effects and a wider strain range for the TRIP effect up to higher strains by adjusting the deformation temperature are good strategies to improve the strength-ductility synergy of this metastable stainless steel.In this regard,by consideration of the observed temperature-dependency of plastic deformation,the controlled sequence of TWIP and TRIP effects for archiving superior strength-ductility trade-off was intended by the pre-designed temperature jump tensile tests.Accordingly,the optimum tensile toughness of 846 MJ/m^(3) and total elongation to 133% were obtained by this strategy via exploiting the advantages of the TWIP effect at 100℃ and the TRIP effect at 25℃ at the later stages of the straining.Consequently,a deformation-temperature-transformation(DTT)diagram was developed for this metastable alloy.Moreover,based on work-hardening analysis,it was found that the main phenomenon constraining further improvement in the ductility and strengthening was the yielding of the deformation-induced α′-martensite. 展开更多
关键词 metastable stainless steels transformation-induced plasticity twinning-induced plasticity stacking fault energy mechanical properties
下载PDF
Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures 被引量:8
14
作者 Yujin Nie Jianwei Dai +1 位作者 Xuan Li Xiaobo Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1124-1148,共25页
Corrosion is one of the most drawbacks which restricts the wide applications of Mg alloys.In the last decade,the corrosion behaviors of Mg alloys with stacking fault(SF)and/or long period stacking ordered(LPSO)structu... Corrosion is one of the most drawbacks which restricts the wide applications of Mg alloys.In the last decade,the corrosion behaviors of Mg alloys with stacking fault(SF)and/or long period stacking ordered(LPSO)structures have obtained increasing attention.However,the corrosion mechanism of the SF–or LPSO–containing Mg alloys has not been well illustrated and even reverse results have been reported.In this paper,we have reviewed recent reports on corrosion behaviors of SF–or LPSO–containing Mg alloys to better clarify and understand the significance and mechanism.Moreover,some deficiencies are presented and advises are proposed for the development of corrosion resistant Mg alloys with SF or LPSO structures. 展开更多
关键词 Magnesium alloys Corrosion behavior stacking fault Long period stacking ordered
下载PDF
Basal stacking fault induced twin boundary gliding,twinning disconnection and twin growth in hcp Ti from the first-principles 被引量:3
15
作者 Qi QIAN Zheng-qing LIU +3 位作者 Yong JIANG Yi-ren WANG Xing-long AN Min SONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期382-390,共9页
First-principles calculations were performed to investigate the structures and energetics of {101n} coherent twin boundaries(CTBs) and glide twin boundaries(GTBs) in hexagonal close-packed(hcp) Ti. The formation mecha... First-principles calculations were performed to investigate the structures and energetics of {101n} coherent twin boundaries(CTBs) and glide twin boundaries(GTBs) in hexagonal close-packed(hcp) Ti. The formation mechanism of GTBs and their correlation with twin growth were fundamentally explored. Results suggested that GTBs can form from the gliding of CTBs, through their interaction with basal stacking fault. The gliding eventually restored the CTB structures by forming a pair of single-layer twinning disconnections. The pile-up of twinning disconnections should be responsible for the wide steps at twin boundaries as observed in high-resolution transmission electron microscopy, which can further promote twin growth. Possible effects of various alloying elements on pinning twin boundaries were also evaluated, to guide the strengthening design of Ti alloys. 展开更多
关键词 twin boundary stacking fault twinning disconnection twin growth first principles
下载PDF
Determination of stacking fault energies in a high-Nb TiAl alloy at 298 K and 1273 K 被引量:1
16
作者 SONG Xiping, CAO Lin, WANG Yanli, LIN Junpin, and CHEN Guoliang 《Rare Metals》 SCIE EI CAS CSCD 2004年第1期31-31,共1页
The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 K were determined. The principle for the determination of the stacking fault energies is based on the fact that the stacking fault energy and t... The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 K were determined. The principle for the determination of the stacking fault energies is based on the fact that the stacking fault energy and the elastic interaction energy acting on the dissociated partial dislocations are equal. After the compress deformations with the strain of 0.2% at 298 K and 1273 K, and water quench to maintain the dislocation structures deformed at 1273 K, the dissociation distances between two partial dislocations were determined by weak beam transmission electron microscopy (WBTEM) technique. Based on these dissociation distances and the corresponding calculation method, the stacking fault energies were determined to be 77-81 mJ/m2 at 298 K and to be 57-60mJ/m2 at 1273 K respectively. 展开更多
关键词 stacking fault energy TiAl alloy TEMPERATURE DISLOCATION
下载PDF
Stacking fault energy and electronic structure of molybdenum under solid solution softening/hardening 被引量:1
17
作者 LIU Pan LIU Liu-cheng GONG Hao-ran 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期39-47,共9页
Ab initio calculations are used to understand the fundamental mechanism of the solid solution softening/hardening of the Mo-binary system.The results reveal that the Mo-Ti,Mo-Ta,Mo-Nb,and Mo-W interactions are primari... Ab initio calculations are used to understand the fundamental mechanism of the solid solution softening/hardening of the Mo-binary system.The results reveal that the Mo-Ti,Mo-Ta,Mo-Nb,and Mo-W interactions are primarily attractive with negative heats of formation,while the interactions of Mo-Re,and Mo-Zr would be mainly repulsive with positive heats of formation.It is also shown that the addition of Re and Zr would cause the solid solution softening of Mo by the decrease of the unstable stacking fault energy and the increase of ductility.On the contrary,the elements of W,Ta,Ti,and Nb could bring about the solid-solution hardening of Mo through the impediment of the slip of the dislocation and the decrease of ductility.Electronic structures indicate that the weaker/stronger chemical bonding due to the alloying elements should fundamentally induce the solid solution softening/hardening of Mo.The results are discussed and compared with available evidence in literatures,which could deepen the fundamental understanding of the solid solution softening/hardening of the binary metallic system. 展开更多
关键词 stacking fault energy electronic structure MOLYBDENUM solid solution softening/hardening ab initio calculation
下载PDF
Stacking fault energy,yield stress anomaly, and twinnability of Ni_3Al:A first principles study 被引量:1
18
作者 刘利利 吴小志 +2 位作者 王锐 李卫国 刘庆 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期407-414,共8页
Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of... Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of Ni3Al. The antiphase boundary energies, complex stacking fault energies, superlattice intrinsic stacking fault energies, and twinning energies decrease slightly with temperature. Temperature dependent anomalous yield stress of Ni3Al is predicted by the energybased criterion based on elastic anisotropy and antiphase boundary energies. It is found that p increases with temperature and this can give a more accurate description of the anomalous yield stress in Ni3Al. Furthermore, the predicted twinnablity of Ni3Al is also decreasing with temperature. 展开更多
关键词 NI3AL stacking fault energy anomalous yield stress twinnability
下载PDF
First-principles study of the effects of selected interstitial atoms on the generalized stacking fault energies, strength, and ductility of Ni 被引量:1
19
作者 李春霞 党随虎 +2 位作者 王丽萍 张彩丽 韩培德 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期454-458,共5页
We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for t... We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for the (112) (111) and / 101) ( 1 1 1) systems. Because of the anisotropy of the single crystal, the addition of interstitials tends to promote the strength of Ni by slipping along the (10T) direction while facilitating plastic deformation by slipping along the (115) direction. There is a different impact on the mechanical behavior of Ni when the interstitials are located in the slip plane. The evaluation of the Rice criterion reveals that the addition of the interstitials H and O increases the brittleness in Ni and promotes the probability of cleavage fracture, while the addition of S and N tends to increase the ductility. Besides, P, H, and S have a negligible effect on the deformation tendency in Ni, while the tendency of partial dislocation is more prominent with the addition of N and O. The addition of interstitial atoms tends to increase the high-energy barrier γmax, thereby the second partial resulting from the dislocation tends to reside and move on to the next layer. 展开更多
关键词 first principles generalized stacking fault energy Nickel based alloys strength and ductility
下载PDF
Molecular dynamics simulation on generalized stacking fault energies of FCC metals under preloading stress 被引量:1
20
作者 张亮 吕程 +3 位作者 Tieu Kiet 赵星 裴林清 Michal Guillaume 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期586-593,共8页
Molecular dynamics(MD) simulations are performed to investigate the effects of stress on generalized stacking fault(GSF) energy of three fcc metals(Cu, Al, and Ni). The simulation model is deformed by uniaxial tension... Molecular dynamics(MD) simulations are performed to investigate the effects of stress on generalized stacking fault(GSF) energy of three fcc metals(Cu, Al, and Ni). The simulation model is deformed by uniaxial tension or compression in each of [111], [11-2], and [1-10] directions, respectively, before shifting the lattice to calculate the GSF curve. Simulation results show that the values of unstable stacking fault energy(γusf), stable stacking fault energy(γsf), and unstable twin fault energy(γutf) of the three elements can change with the preloaded tensile or compressive stress in different directions.The ratio of γsf/γusf, which is related to the energy barrier for full dislocation nucleation, and the ratio of γutf/γusf, which is related to the energy barrier for twinning formation are plotted each as a function of the preloading stress. The results of this study reveal that the stress state can change the energy barrier of defect nucleation in the crystal lattice, and thereby can play an important role in the deformation mechanism of nanocrystalline material. 展开更多
关键词 molecular dynamics embeded atom method generalized stacking fault
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部