Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work ...Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work Function'(ΔWF)measured via Kelvin Probe Force Microscopy(KPFM),as a property directly affected by interatomic bond types,i.e.the electronic structure,nanoindentation measurements,and Stacking Fault Energy values reported in the literature.It was shown that the nano-hardness of the solid-solutionα-Mg phase changed in the order of Mg-Ca>Mg-Sr>Mg-Ba.Thus,it was shown,by also considering the nano-hardness levels,that SFE of a solid-solution is closely correlated with its‘Work Function'level.Nano-hardness measurements on the eutectics andΔWF difference between eutectic phases enabled an assessment of the relative bond strength and the pertinent electronic structures of the eutectics in the three alloys.Correlation withΔWF and at least qualitative verification of those computed SFE values with some experimental measurement techniques were considered important as those computational methods are based on zero Kelvin degree,relatively simple atomic models and a number of assumptions.As asserted by this investigation,if the results of measurement techniques can be qualitatively correlated with those of the computational methods,it can be possible to evaluate the electronic structures in alloys,starting from binary systems,going to ternary and then multi-elemental systems.Our investigation has shown that such a qualitative correlation is possible.After all,the SFE values are not treated as absolute values but rather become essential in comparative investigations when assessing the influences of alloying elements at a fundamental level,that is,free electron density distributions.Our study indicated that the principles of‘electronic metallurgy'in developing multi-elemental alloy systems can be followed via practical experimental methods,i.e.ΔWF measurements using KPFM and nanoindentation.展开更多
Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurem...Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength.展开更多
Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of...Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of Ni3Al. The antiphase boundary energies, complex stacking fault energies, superlattice intrinsic stacking fault energies, and twinning energies decrease slightly with temperature. Temperature dependent anomalous yield stress of Ni3Al is predicted by the energybased criterion based on elastic anisotropy and antiphase boundary energies. It is found that p increases with temperature and this can give a more accurate description of the anomalous yield stress in Ni3Al. Furthermore, the predicted twinnablity of Ni3Al is also decreasing with temperature.展开更多
Ab initio calculations are used to understand the fundamental mechanism of the solid solution softening/hardening of the Mo-binary system.The results reveal that the Mo-Ti,Mo-Ta,Mo-Nb,and Mo-W interactions are primari...Ab initio calculations are used to understand the fundamental mechanism of the solid solution softening/hardening of the Mo-binary system.The results reveal that the Mo-Ti,Mo-Ta,Mo-Nb,and Mo-W interactions are primarily attractive with negative heats of formation,while the interactions of Mo-Re,and Mo-Zr would be mainly repulsive with positive heats of formation.It is also shown that the addition of Re and Zr would cause the solid solution softening of Mo by the decrease of the unstable stacking fault energy and the increase of ductility.On the contrary,the elements of W,Ta,Ti,and Nb could bring about the solid-solution hardening of Mo through the impediment of the slip of the dislocation and the decrease of ductility.Electronic structures indicate that the weaker/stronger chemical bonding due to the alloying elements should fundamentally induce the solid solution softening/hardening of Mo.The results are discussed and compared with available evidence in literatures,which could deepen the fundamental understanding of the solid solution softening/hardening of the binary metallic system.展开更多
Alternating bending shear stresses lead to the formation of twin orientations in the texture of FCC materials with middle and low stacking fault energy (SFE). Only in the stainless steel with a low SFE during alternat...Alternating bending shear stresses lead to the formation of twin orientations in the texture of FCC materials with middle and low stacking fault energy (SFE). Only in the stainless steel with a low SFE during alternating bending with different number of cycles components of shear texture {111};{hkl};{001} were formed. Copper (middle SFE), along with orientations of twinning and cubic texture formed orientation of deformation {135}. During alternating bending of aluminum (high SFE), a dynamic recovery occurred. The share of initial cubic texture increases with the increase of number of cycles of alternating bending and reaches its maximum after three cycles. Share of component of texture Goss increased slightly. The most significant change of the microstructure and texture occurred during the first 3 - 5展开更多
The effects of Cr and Al content were investigated on the stacking fault energy in austenitic Fe-31Mn-(0-7.26)Cr-0.96C and Fe-31Mn-(0-8.68)Al-0.85C alloys by the thermodynamic analysis. The results show that the addit...The effects of Cr and Al content were investigated on the stacking fault energy in austenitic Fe-31Mn-(0-7.26)Cr-0.96C and Fe-31Mn-(0-8.68)Al-0.85C alloys by the thermodynamic analysis. The results show that the additions of chromium or aluminum increase the non-magnetic component of the stacking fault energy in the γ-Fe-Mn alloys, and the effect of aluminum is larger than that of chromium. The change in the magnetic entropy caused in the antiferromagnetic transition increases the free energy difference between the γ and s phases in the γr-Fe-Mn alloys. The effects of chromium and aluminum on the magnetic component were discussed on the basis of the influence of both upon the antiferromagnetic transition in the γ-Fe-Mn alloys.展开更多
The correlation between the creep rupture behaviour and the stacking fault energy of matrices of γ′strengthened superalloys has been studied dur- ing constant load creep.At high temperature and intermediate stress,t...The correlation between the creep rupture behaviour and the stacking fault energy of matrices of γ′strengthened superalloys has been studied dur- ing constant load creep.At high temperature and intermediate stress,the creep rupture time and strain strongly depend on the stacking fault energy of matrices rather than the creep friction stress,but at higher stress,the role of grain boundary carbides becomes more obvious. However,in the considerably extensive stress range investigated here,the mean creep rate is a power function of the stacking fault energy of matrices and the power index decreases with in- creasing initial applied stress.Particularly,at inter- mediate stresses the product of this index and the initial applied stress compensated by the shear modulus is same for two series of superalloys. Hence,this product may be a criterion predicting that the matrix deformation controls high tempera- ture creep rupture.展开更多
The stacking fault probability of CoNi alloys with different contents of Ni was measured by X ray diffraction methods. The results show that the stacking fault decreases with increasing Ni content and with increasing ...The stacking fault probability of CoNi alloys with different contents of Ni was measured by X ray diffraction methods. The results show that the stacking fault decreases with increasing Ni content and with increasing temperature. The thermodynamical calculation has found an equation that can express the stacking fault energy γ of CoNi at temperature T . The phase equilibrium temperature depends on the composition of the certain alloy. The relationship between stacking fault energy γ and stacking fault probability P sf is determined.展开更多
We present the High-Throughput Computing and Statistical Analysis(HCSA)scheme,which efficiently and accurately predicts the stacking fault energies(SFEs)of multi-principal element alloys(MPEAs).Our approach estimates ...We present the High-Throughput Computing and Statistical Analysis(HCSA)scheme,which efficiently and accurately predicts the stacking fault energies(SFEs)of multi-principal element alloys(MPEAs).Our approach estimates the SFE of a single complex supercell by averaging numerous SFEs from small supercells,resulting in superior accuracy compared to traditional density functional theory(DFT)calculations.To validate our scheme,we applied it to NiFe and Ni_(10)Co_(60)Cr_(25)W_(5)alloys,achieving an SFE error of only 11%,in contrast to the 45%error obtained from traditional DFT calculations for NiFe.We observed a strong correlation between the average SFEs of samples with the same valence electron concentration as that of the experimental data.Our scheme provides an efficient and reliable tool for predicting SFEs in MPEAs and holds the potential to significantly accelerate materials design and discovery processes.展开更多
The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 K were determined. The principle for the determination of the stacking fault energies is based on the fact that the stacking fault energy and t...The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 K were determined. The principle for the determination of the stacking fault energies is based on the fact that the stacking fault energy and the elastic interaction energy acting on the dissociated partial dislocations are equal. After the compress deformations with the strain of 0.2% at 298 K and 1273 K, and water quench to maintain the dislocation structures deformed at 1273 K, the dissociation distances between two partial dislocations were determined by weak beam transmission electron microscopy (WBTEM) technique. Based on these dissociation distances and the corresponding calculation method, the stacking fault energies were determined to be 77-81 mJ/m2 at 298 K and to be 57-60mJ/m2 at 1273 K respectively.展开更多
We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for t...We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for the (112) (111) and / 101) ( 1 1 1) systems. Because of the anisotropy of the single crystal, the addition of interstitials tends to promote the strength of Ni by slipping along the (10T) direction while facilitating plastic deformation by slipping along the (115) direction. There is a different impact on the mechanical behavior of Ni when the interstitials are located in the slip plane. The evaluation of the Rice criterion reveals that the addition of the interstitials H and O increases the brittleness in Ni and promotes the probability of cleavage fracture, while the addition of S and N tends to increase the ductility. Besides, P, H, and S have a negligible effect on the deformation tendency in Ni, while the tendency of partial dislocation is more prominent with the addition of N and O. The addition of interstitial atoms tends to increase the high-energy barrier γmax, thereby the second partial resulting from the dislocation tends to reside and move on to the next layer.展开更多
The doping effects on the stacking fault energies(SFEs),including the superlattice intrinsic stacking fault and superlattice extrinsic stacking fault,were studied by first principles calculation of the/phase in the Ni...The doping effects on the stacking fault energies(SFEs),including the superlattice intrinsic stacking fault and superlattice extrinsic stacking fault,were studied by first principles calculation of the/phase in the Ni-based superalloys.The formation energy results show that the main alloying elements in Ni-based superalloys,such as Re,Cr,Mo,Ta,and W,prefer to occupy the Al-site in Ni3 AI,Co shows a weak tendency to occupy the Ni-site,and Ru shows a weak tendency to occupy the Al-site.The SFE results show that Co and Ru could decrease the SFEs when added to fault planes,while other main elements increase SFEs.The double-packed superlattice intrinsic stacking fault energies are lower than superlattice extrinsic stacking fault energies when elements(except Co) occupy an Al-site.Furthermore,the SFEs show a symmetrical distribution with the location of the elements in the ternary model.A detailed electronic structure analysis of the Ru effects shows that SFEs correlated with not only the symmetry reduction of the charge accumulation but also the changes in structural energy.展开更多
The effect of Re on stacking fault (SF) nucleation under shear strain in Ni is investigated using the climbing image nudged elastic band method with a Ni-A1-Re embedded-atom-method potential. A parameter (△Ebsf),...The effect of Re on stacking fault (SF) nucleation under shear strain in Ni is investigated using the climbing image nudged elastic band method with a Ni-A1-Re embedded-atom-method potential. A parameter (△Ebsf), the activation energy of SF nucleation under shear strain, is introduced to evaluate the effect of Re on SF nucleation under shear strain. Calcu- lation results show that △Ebsf decreases with Re addition, which means that SF nucleation under shear strain in Ni may be enhanced by Re. The atomic structure observation shows that the decrease of △Ebsf may be due to the expansion of local structure around the Re atom when SF goes through the Re atom.展开更多
The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 Kwere determined. The principle for the determination of the stacking fault energies is based on thefact that the stacking fault energy and the...The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 Kwere determined. The principle for the determination of the stacking fault energies is based on thefact that the stacking fault energy and the elastic interaction energy acting on the dissociatedpartial dislocations are equal. After the compress deformations with the strain of 0.2% at 298 K and1273 K, and water quench to maintain the dislocation structures deformed at 1273 K, thedissociation distances between two partial dislocations were determined by weak beam transmissionelectron microscopy (WBTEM) technique. Based on these dissociation distances and the correspondingcalculation method, the stacking fault energies were determined to be 77-81 mJ/m^2 at 298 K and tobe 57-60mJ/m^2 at 1273 K respectively.展开更多
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare...The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range.展开更多
基金financial support for this work provided by Eski sehir Technical University Scientific Research Projects Unit with Grant Number 20DRP059support provided by the Turkish Ministry of Science,Industry and Technology under the SANTEZ Project 0286.STZ.2013±2。
文摘Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work Function'(ΔWF)measured via Kelvin Probe Force Microscopy(KPFM),as a property directly affected by interatomic bond types,i.e.the electronic structure,nanoindentation measurements,and Stacking Fault Energy values reported in the literature.It was shown that the nano-hardness of the solid-solutionα-Mg phase changed in the order of Mg-Ca>Mg-Sr>Mg-Ba.Thus,it was shown,by also considering the nano-hardness levels,that SFE of a solid-solution is closely correlated with its‘Work Function'level.Nano-hardness measurements on the eutectics andΔWF difference between eutectic phases enabled an assessment of the relative bond strength and the pertinent electronic structures of the eutectics in the three alloys.Correlation withΔWF and at least qualitative verification of those computed SFE values with some experimental measurement techniques were considered important as those computational methods are based on zero Kelvin degree,relatively simple atomic models and a number of assumptions.As asserted by this investigation,if the results of measurement techniques can be qualitatively correlated with those of the computational methods,it can be possible to evaluate the electronic structures in alloys,starting from binary systems,going to ternary and then multi-elemental systems.Our investigation has shown that such a qualitative correlation is possible.After all,the SFE values are not treated as absolute values but rather become essential in comparative investigations when assessing the influences of alloying elements at a fundamental level,that is,free electron density distributions.Our study indicated that the principles of‘electronic metallurgy'in developing multi-elemental alloy systems can be followed via practical experimental methods,i.e.ΔWF measurements using KPFM and nanoindentation.
基金Project (50874056) supported by the National Natural Science Foundation of China
文摘Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11104361 and 11304403)the Fundamental Research Funds for the Central Universities,China(Grant Nos.CQDXWL2014003 and CDJZR14328801)
文摘Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of Ni3Al. The antiphase boundary energies, complex stacking fault energies, superlattice intrinsic stacking fault energies, and twinning energies decrease slightly with temperature. Temperature dependent anomalous yield stress of Ni3Al is predicted by the energybased criterion based on elastic anisotropy and antiphase boundary energies. It is found that p increases with temperature and this can give a more accurate description of the anomalous yield stress in Ni3Al. Furthermore, the predicted twinnablity of Ni3Al is also decreasing with temperature.
基金Project(51801129)supported by the National Natural Science Foundation of ChinaProject supported by the State Key Laboratory of Powder Metallurgy,China。
文摘Ab initio calculations are used to understand the fundamental mechanism of the solid solution softening/hardening of the Mo-binary system.The results reveal that the Mo-Ti,Mo-Ta,Mo-Nb,and Mo-W interactions are primarily attractive with negative heats of formation,while the interactions of Mo-Re,and Mo-Zr would be mainly repulsive with positive heats of formation.It is also shown that the addition of Re and Zr would cause the solid solution softening of Mo by the decrease of the unstable stacking fault energy and the increase of ductility.On the contrary,the elements of W,Ta,Ti,and Nb could bring about the solid-solution hardening of Mo through the impediment of the slip of the dislocation and the decrease of ductility.Electronic structures indicate that the weaker/stronger chemical bonding due to the alloying elements should fundamentally induce the solid solution softening/hardening of Mo.The results are discussed and compared with available evidence in literatures,which could deepen the fundamental understanding of the solid solution softening/hardening of the binary metallic system.
文摘Alternating bending shear stresses lead to the formation of twin orientations in the texture of FCC materials with middle and low stacking fault energy (SFE). Only in the stainless steel with a low SFE during alternating bending with different number of cycles components of shear texture {111};{hkl};{001} were formed. Copper (middle SFE), along with orientations of twinning and cubic texture formed orientation of deformation {135}. During alternating bending of aluminum (high SFE), a dynamic recovery occurred. The share of initial cubic texture increases with the increase of number of cycles of alternating bending and reaches its maximum after three cycles. Share of component of texture Goss increased slightly. The most significant change of the microstructure and texture occurred during the first 3 - 5
文摘The effects of Cr and Al content were investigated on the stacking fault energy in austenitic Fe-31Mn-(0-7.26)Cr-0.96C and Fe-31Mn-(0-8.68)Al-0.85C alloys by the thermodynamic analysis. The results show that the additions of chromium or aluminum increase the non-magnetic component of the stacking fault energy in the γ-Fe-Mn alloys, and the effect of aluminum is larger than that of chromium. The change in the magnetic entropy caused in the antiferromagnetic transition increases the free energy difference between the γ and s phases in the γr-Fe-Mn alloys. The effects of chromium and aluminum on the magnetic component were discussed on the basis of the influence of both upon the antiferromagnetic transition in the γ-Fe-Mn alloys.
文摘The correlation between the creep rupture behaviour and the stacking fault energy of matrices of γ′strengthened superalloys has been studied dur- ing constant load creep.At high temperature and intermediate stress,the creep rupture time and strain strongly depend on the stacking fault energy of matrices rather than the creep friction stress,but at higher stress,the role of grain boundary carbides becomes more obvious. However,in the considerably extensive stress range investigated here,the mean creep rate is a power function of the stacking fault energy of matrices and the power index decreases with in- creasing initial applied stress.Particularly,at inter- mediate stresses the product of this index and the initial applied stress compensated by the shear modulus is same for two series of superalloys. Hence,this product may be a criterion predicting that the matrix deformation controls high tempera- ture creep rupture.
文摘The stacking fault probability of CoNi alloys with different contents of Ni was measured by X ray diffraction methods. The results show that the stacking fault decreases with increasing Ni content and with increasing temperature. The thermodynamical calculation has found an equation that can express the stacking fault energy γ of CoNi at temperature T . The phase equilibrium temperature depends on the composition of the certain alloy. The relationship between stacking fault energy γ and stacking fault probability P sf is determined.
基金financially supported by the National Natural Science Foundation of China(Nos.22173047 and 51931003)the Natural Science Foundation of Jiangsu Province(No.BK20211198)+1 种基金the Sino-German Mobility Program of the Sino-German Center for Research Promotion(Grant M-0147)the Fundamental Research Funds for the Central Universities(Nos.30920041116,30919011254,and 30919011405).
文摘We present the High-Throughput Computing and Statistical Analysis(HCSA)scheme,which efficiently and accurately predicts the stacking fault energies(SFEs)of multi-principal element alloys(MPEAs).Our approach estimates the SFE of a single complex supercell by averaging numerous SFEs from small supercells,resulting in superior accuracy compared to traditional density functional theory(DFT)calculations.To validate our scheme,we applied it to NiFe and Ni_(10)Co_(60)Cr_(25)W_(5)alloys,achieving an SFE error of only 11%,in contrast to the 45%error obtained from traditional DFT calculations for NiFe.We observed a strong correlation between the average SFEs of samples with the same valence electron concentration as that of the experimental data.Our scheme provides an efficient and reliable tool for predicting SFEs in MPEAs and holds the potential to significantly accelerate materials design and discovery processes.
文摘The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 K were determined. The principle for the determination of the stacking fault energies is based on the fact that the stacking fault energy and the elastic interaction energy acting on the dissociated partial dislocations are equal. After the compress deformations with the strain of 0.2% at 298 K and 1273 K, and water quench to maintain the dislocation structures deformed at 1273 K, the dissociation distances between two partial dislocations were determined by weak beam transmission electron microscopy (WBTEM) technique. Based on these dissociation distances and the corresponding calculation method, the stacking fault energies were determined to be 77-81 mJ/m2 at 298 K and to be 57-60mJ/m2 at 1273 K respectively.
基金supported by the National Natural Science Foundation of China(Grant No 51371123)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.2013140211003)+1 种基金the Natural Science Foundation of Shanxi Science Technological Commission,China(Grant No.2014011002)the Scientific and Technological Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ131315)
文摘We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for the (112) (111) and / 101) ( 1 1 1) systems. Because of the anisotropy of the single crystal, the addition of interstitials tends to promote the strength of Ni by slipping along the (10T) direction while facilitating plastic deformation by slipping along the (115) direction. There is a different impact on the mechanical behavior of Ni when the interstitials are located in the slip plane. The evaluation of the Rice criterion reveals that the addition of the interstitials H and O increases the brittleness in Ni and promotes the probability of cleavage fracture, while the addition of S and N tends to increase the ductility. Besides, P, H, and S have a negligible effect on the deformation tendency in Ni, while the tendency of partial dislocation is more prominent with the addition of N and O. The addition of interstitial atoms tends to increase the high-energy barrier γmax, thereby the second partial resulting from the dislocation tends to reside and move on to the next layer.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0701502).
文摘The doping effects on the stacking fault energies(SFEs),including the superlattice intrinsic stacking fault and superlattice extrinsic stacking fault,were studied by first principles calculation of the/phase in the Ni-based superalloys.The formation energy results show that the main alloying elements in Ni-based superalloys,such as Re,Cr,Mo,Ta,and W,prefer to occupy the Al-site in Ni3 AI,Co shows a weak tendency to occupy the Ni-site,and Ru shows a weak tendency to occupy the Al-site.The SFE results show that Co and Ru could decrease the SFEs when added to fault planes,while other main elements increase SFEs.The double-packed superlattice intrinsic stacking fault energies are lower than superlattice extrinsic stacking fault energies when elements(except Co) occupy an Al-site.Furthermore,the SFEs show a symmetrical distribution with the location of the elements in the ternary model.A detailed electronic structure analysis of the Ru effects shows that SFEs correlated with not only the symmetry reduction of the charge accumulation but also the changes in structural energy.
基金supported by the National Basic Research Program of China(Grant No.2011CB606402)the National Natural Science Foundation of China(Grant No.51071091)
文摘The effect of Re on stacking fault (SF) nucleation under shear strain in Ni is investigated using the climbing image nudged elastic band method with a Ni-A1-Re embedded-atom-method potential. A parameter (△Ebsf), the activation energy of SF nucleation under shear strain, is introduced to evaluate the effect of Re on SF nucleation under shear strain. Calcu- lation results show that △Ebsf decreases with Re addition, which means that SF nucleation under shear strain in Ni may be enhanced by Re. The atomic structure observation shows that the decrease of △Ebsf may be due to the expansion of local structure around the Re atom when SF goes through the Re atom.
基金The work was financial supported by the National Natural Science Foundation of China (No.59895151).
文摘The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 Kwere determined. The principle for the determination of the stacking fault energies is based on thefact that the stacking fault energy and the elastic interaction energy acting on the dissociatedpartial dislocations are equal. After the compress deformations with the strain of 0.2% at 298 K and1273 K, and water quench to maintain the dislocation structures deformed at 1273 K, thedissociation distances between two partial dislocations were determined by weak beam transmissionelectron microscopy (WBTEM) technique. Based on these dissociation distances and the correspondingcalculation method, the stacking fault energies were determined to be 77-81 mJ/m^2 at 298 K and tobe 57-60mJ/m^2 at 1273 K respectively.
基金Saeed Sadeghpour would like to thank Jane,Aatos Erkon säätiö(JAES),and Tiina ja Antti Herlinin säätiö(TAHS)for their financial support on Advanced Steels for Green Planet Project.The authors would also like to greatly thank the members of the“Formability Laboratory”and“Advanced Steels and Thermomechanically Processed Engineering Ma-terials Laboratory”for their help and support。
文摘The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range.