The microstructures of as-cast and as-solution Mg–12Gd–2Er–1Zn–0.6Zr alloys were investigated by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), highresoluti...The microstructures of as-cast and as-solution Mg–12Gd–2Er–1Zn–0.6Zr alloys were investigated by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), highresolution transmission electron microscopy(HRTEM)X-ray diffraction(XRD) and selected-area electron diffraction(SAED) in the present investigation. The results show that the primary eutectic phase Mg5(Gd, Er, Zn) and some flocculent features are found in the as-cast alloy; the SAED pattern indicates that these flocculent features are the dense areas of stacking faults. The 14H-LPSO structure precipitates in the temperature range of 673–793 K, and the volume fraction of 14H-LPSO structure increases with the extension of heating time; however, there is no precipitation of 14H-LPSO structure when the temperature reaches up to 803 K. In addition, the Mg5(Gd, Er, Zn) phase dissolves gradually along with the precipitation of 14H-LPSO structure.展开更多
基金financially supported by the Projects of Beijing Municipal Science and Technology Commission (No. Z131100003213019)the Projects of Beijing Municipal Commission of Education (Nos. KM201110005001 and KM201310005001)Beijing Natural Science Foundation (No. 2144043)
文摘The microstructures of as-cast and as-solution Mg–12Gd–2Er–1Zn–0.6Zr alloys were investigated by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), highresolution transmission electron microscopy(HRTEM)X-ray diffraction(XRD) and selected-area electron diffraction(SAED) in the present investigation. The results show that the primary eutectic phase Mg5(Gd, Er, Zn) and some flocculent features are found in the as-cast alloy; the SAED pattern indicates that these flocculent features are the dense areas of stacking faults. The 14H-LPSO structure precipitates in the temperature range of 673–793 K, and the volume fraction of 14H-LPSO structure increases with the extension of heating time; however, there is no precipitation of 14H-LPSO structure when the temperature reaches up to 803 K. In addition, the Mg5(Gd, Er, Zn) phase dissolves gradually along with the precipitation of 14H-LPSO structure.