期刊文献+
共找到173篇文章
< 1 2 9 >
每页显示 20 50 100
基于研制阶段数据融合的舰炮制导弹药测试性评估方法 被引量:1
1
作者 应文健 程雨森 +1 位作者 王旋 孙世岩 《系统工程与电子技术》 EI CSCD 北大核心 2024年第8期2730-2737,共8页
针对小子样条件下开展测试性评估存在数据冲突的问题,提出一种基于研制阶段数据融合的舰炮制导弹药测试性评估方法。首先,确定研制阶段中舰炮制导弹药测试性信息的来源,并根据其不同特点,利用相应的Beta分布参数折合方法,获得测试性信息... 针对小子样条件下开展测试性评估存在数据冲突的问题,提出一种基于研制阶段数据融合的舰炮制导弹药测试性评估方法。首先,确定研制阶段中舰炮制导弹药测试性信息的来源,并根据其不同特点,利用相应的Beta分布参数折合方法,获得测试性信息Beta分布并构造对应的基本信任分配函数。其次,为解决在数据融合中存在的冲突问题,引入一种基于可信度、不确定度和重要度的数据融合权重确定方法,通过融合多来源的测试性信息得到舰炮制导弹药测试性指标评估结果。实例表明,所提方法能充分利用研制阶段收集的多来源测试性信息,有效利用主观不确定性信息,且减少数据冲突问题,可提高舰炮制导弹药测试性指标评估的可靠性。 展开更多
关键词 测试性评估 舰炮制导弹药 研制阶段 数据融合
下载PDF
One stage anterior release and posterior fusion for the treatment of irreducible atlantoaxial dislocation secondary to os odontoideum
2
作者 任先军 《外科研究与新技术》 2011年第2期80-81,共2页
Objective To evaluate clinical effect of the ventral release through high anterior cervical retropharyngeal approach and one stage posterior fusion for the treatment ofirreducible atlantoaxial dislocation (IAAD) secon... Objective To evaluate clinical effect of the ventral release through high anterior cervical retropharyngeal approach and one stage posterior fusion for the treatment ofirreducible atlantoaxial dislocation (IAAD) secondary 展开更多
关键词 One stage anterior release and posterior fusion for the treatment of irreducible atlantoaxial dislocation secondary to os odontoideum
下载PDF
基于深度学习的三维肿瘤及器官分割
3
作者 顾德 王宁 +1 位作者 张寅斌 刘乐 《中国医学物理学杂志》 CSCD 2024年第9期1122-1128,共7页
针对三维医学图像中由于肿瘤或器官的形状、尺度差异较大导致分割精度较低的问题,提出一种端到端的三维全卷积分割模型。首先,设计空洞立方集成模块在不同分辨率阶段实现多尺度集成,增强复杂边界上的识别能力;其次,引入跨阶段上下文融... 针对三维医学图像中由于肿瘤或器官的形状、尺度差异较大导致分割精度较低的问题,提出一种端到端的三维全卷积分割模型。首先,设计空洞立方集成模块在不同分辨率阶段实现多尺度集成,增强复杂边界上的识别能力;其次,引入跨阶段上下文融合模块融合浅层和深层特征,促进收敛并更准确地定位目标对象;最后,解码器对来自编码器的特征进行拼接以实现分割。在脑肿瘤分割数据集上,平均Dice相似性系数值达到85.37%;在腹部器官分割数据集上,平均Dice相似性系数值达到83.99%。实验结果表明所提模型在三维肿瘤和器官的分割上具有较高精度。 展开更多
关键词 肿瘤分割 器官分割 三维卷积神经网络 空洞立方集成模块 跨阶段上下文融合模块
下载PDF
融合物理约束的压裂水平井产能智能预测框架构建与应用
4
作者 卢聪 罗扬 +1 位作者 郭建春 曾凡辉 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期99-107,共9页
水平井分段压裂是实现非常规油气藏有效开发的关键技术,准确预测压裂水平井产能对于井位优选和压裂参数优化至关重要。随着历史开发数据的不断积累和人工智能技术的迅速发展,数据驱动的人工智能方法为压裂水平井产能预测提供了新的渠道... 水平井分段压裂是实现非常规油气藏有效开发的关键技术,准确预测压裂水平井产能对于井位优选和压裂参数优化至关重要。随着历史开发数据的不断积累和人工智能技术的迅速发展,数据驱动的人工智能方法为压裂水平井产能预测提供了新的渠道。为此,从压裂水平井生产物理过程出发,分析了产能智能预测的物理约束,提出了与物理过程相匹配的产能智能预测框架,并结合四川盆地南部(以下简称川南)地区页岩气开发生产数据开展了实例验证。研究结果表明:(1)压裂水平井产能智能预测需要以压裂段为单位进行特征融合处理,单井产能是由初始压裂段到末尾压裂段依次累计作用的结果,各压裂段之间存在顺序关系,各单井的因素输入维度存在差异;(2)采用循环神经网络能够完全匹配压裂段之间的顺序关系和汇聚作用,而Mask屏蔽机制则能够解决各单井压裂段数量不统一的矛盾。结论认为:(1)该智能预测模型能够学习各单井输入序列与产能之间的复杂映射关系,训练集相对误差为0.098、测试集相对误差为0.117,较循环神经网络(RNN)模型误差的下降幅度分别为37.6%和37.0%,较多层感知机(MLP)模型误差的下降幅度分别为77.3%和77.4%,展现出优异的预测性能;(2)该研究成果能够为非常规油气藏压裂水平井产能预测的技术进步和快速发展提供新的思路与借鉴。 展开更多
关键词 四川盆地南部 页岩气 水平井 分段压裂 特征融合 产能预测 人工智能 循环神经网络 物理约束
下载PDF
基于自动睡眠分期的多模态残差时空融合模型
5
作者 郭业才 仝爽 《系统仿真学报》 CAS CSCD 北大核心 2024年第9期2065-2074,共10页
高精度的睡眠分期对于正确评定睡眠情况起到了至关重要的作用。针对现有的卷积网络无法获取生理信号拓扑特征的问题,提出了一种基于多模态残差时空融合的睡眠分期算法。利用短时傅里叶变换和自适应图卷积获取时频图像和时空图像,将其转... 高精度的睡眠分期对于正确评定睡眠情况起到了至关重要的作用。针对现有的卷积网络无法获取生理信号拓扑特征的问题,提出了一种基于多模态残差时空融合的睡眠分期算法。利用短时傅里叶变换和自适应图卷积获取时频图像和时空图像,将其转换为高维的特征向量;通过时频特征和时空特征提取模块实现特征信息流的轻量化交互;使用特征增强融合模块融合特征信息,输出睡眠分期结果。结果表明:该模型具有较高的准确率,在ISRUC-S3数据集上整体准确率为85.3%,F1分数为83.8%,Cohen's kappa为81%,N1阶段准确率达到69.81%。ISRUC-S1数据集上的实验证明了模型的普遍性。 展开更多
关键词 睡眠分期 多视图融合 图卷积网络 深度学习 脑电信号
下载PDF
基于跨阶段特征融合算法的混合部位运动图像超分辨率修复方法
6
作者 朱磊 《长春大学学报》 2024年第6期25-31,共7页
混合部位运动图像存在模糊、失真、低分辨率等问题,且峰值信噪比差值较小。提出基于跨阶段特征融合算法的混合部位运动图像超分辨率修复方法。结合非线性映射关系重构像素点,采用跨阶段特征融合算法,完成混合部位运动图像超分辨率修复... 混合部位运动图像存在模糊、失真、低分辨率等问题,且峰值信噪比差值较小。提出基于跨阶段特征融合算法的混合部位运动图像超分辨率修复方法。结合非线性映射关系重构像素点,采用跨阶段特征融合算法,完成混合部位运动图像超分辨率修复。实验结果表明:得到完整的混合部位运动图像修复结果,表现出的峰值信噪比差值较大,修复后的图像分辨率更优,满足了混合部位运动图像的现实应用需求。 展开更多
关键词 运动图像 跨阶段特征融合算法 混合部位图像修复
下载PDF
内蒙古马旅游产业融合发展研究
7
作者 朱亚成 《集宁师范学院学报》 2024年第1期18-22,共5页
马旅游产业融合发展能够统筹推进马产业、马文化、马旅游、马体育协同发展,显著提升马产业经济效益和社会效益,对于内蒙古培育马产业发展新的经济增长点,提升马旅游产业质量效益竞争力大有裨益。本研究综合运用文献资料、实地调研等方... 马旅游产业融合发展能够统筹推进马产业、马文化、马旅游、马体育协同发展,显著提升马产业经济效益和社会效益,对于内蒙古培育马产业发展新的经济增长点,提升马旅游产业质量效益竞争力大有裨益。本研究综合运用文献资料、实地调研等方法对内蒙古马旅游产业融合的概念、意义、阶段与模式进行深入分析,旨在促进内蒙古马旅游产业融合高质量发展,并为加快推进内蒙古现代马产业发展提供参考。 展开更多
关键词 马产业 马旅游 融合阶段 融合模式
下载PDF
基于预训练和多模态融合的假新闻检测 被引量:1
8
作者 周昊玮 刘勇 玄萍 《计算机工程》 CSCD 北大核心 2024年第1期289-295,共7页
现有的多模态检测模型通常对每个模态的特征进行简单拼接,不能对模态之间的相关性进行有效建模,而且很难迁移到标签稀少的领域。提出一种基于预训练和多模态融合的假新闻检测模型PMFD。提取新闻附带图像不同区域的特征作为图像原始向量... 现有的多模态检测模型通常对每个模态的特征进行简单拼接,不能对模态之间的相关性进行有效建模,而且很难迁移到标签稀少的领域。提出一种基于预训练和多模态融合的假新闻检测模型PMFD。提取新闻附带图像不同区域的特征作为图像原始向量,合并图像原始向量作为图像引导向量,设计早期融合、中期融合、后期融合3种不同的多模态融合方式。在早期融合阶段,通过图像引导向量初始化文本特征提取器,获取文本原始向量,合并文本原始向量作为文本引导向量。在中期融合阶段,使用模态的原始向量集合与其他模态的引导向量构造模态的特征表示。在后期融合阶段,融合不同模态的特征表示,构造新闻的特征表示。为提高模型的泛化能力,在标签丰富的数据上对PMFD进行预训练,然后再在标签稀少的数据上对PMFD进行微调。在公开数据集上的实验结果表明,PMFD能有效检测假新闻结果,相对传统模型CNN、LSTM、BERT等有10%以上的提升,相对EANN、M_model多模态假新闻检测模型有2%~3%的提升。 展开更多
关键词 假新闻检测 预训练 多模态融合 引导向量 跨模态共享特征 阶段融合
下载PDF
基于迁移学习的滚动轴承剩余使用寿命预测 被引量:1
9
作者 姜苗 向阳 魏建红 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第4期665-673,共9页
为解决轴承剩余使用寿命预测模型预测泛化能力低,不能准确预测出未训练轴承剩余使用寿命的问题,本文提出了一种迁移轴承状态知识的剩余使用寿命的方法。利用计算时域、频域特征以及模糊熵作为预测特征,使用“3σ”准则将轴承全寿命过程... 为解决轴承剩余使用寿命预测模型预测泛化能力低,不能准确预测出未训练轴承剩余使用寿命的问题,本文提出了一种迁移轴承状态知识的剩余使用寿命的方法。利用计算时域、频域特征以及模糊熵作为预测特征,使用“3σ”准则将轴承全寿命过程划分为正常阶段、退化阶段,以实现对退化阶段轴承剩余使用寿命的预测。构建基于门控循环单元的轴承剩余使用寿命预测模型,并使用某一轴承的全寿命周期数据进行训练,使模型学习到新轴承的状态信息。研究表明:相较于未使用迁移学习的方法,其预测所有轴承的轴承剩余使用寿命平均均方根误差减小了52.53%,平均百分比误差减少了68.87%。本文提出的方法可以有效、准确地预测出轴承的轴承剩余使用寿命。 展开更多
关键词 门控循环单元 剩余使用寿命预测 滚动轴承 迁移学习 预训练 模糊熵 退化阶段 特征融合
下载PDF
多阶段堆叠融合下的敦煌壁画修复
10
作者 邬开俊 单宏全 +2 位作者 田彬 俞天秀 周颜林 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期551-559,共9页
为解决敦煌破损壁画修复难的问题,提出一种多阶段堆叠融合下的壁画修复模型,在第一阶段进行粗修复以及最大化地进行所需特征信息的提取时采用Unet结构,为增强该阶段的修复效果,又加入对抗网络(LsGan);在第二阶段进行精细化修复,主要修... 为解决敦煌破损壁画修复难的问题,提出一种多阶段堆叠融合下的壁画修复模型,在第一阶段进行粗修复以及最大化地进行所需特征信息的提取时采用Unet结构,为增强该阶段的修复效果,又加入对抗网络(LsGan);在第二阶段进行精细化修复,主要修复纹理以及细化遮挡区域,引入多头连接和多尺度分支堆叠模块并对其进行改进,对壁画进行多阶段信息提取并对其进行融合;最后为了修复全局细节,采用大感受野的编解码器结构并且引入轻量级通用可视化(Mobile ViT)模块,同时分离了壁画图像的通道并进行分析,引入对通道不敏感的极化注意力。实验结果表明,该模型很好地解决了壁画纹理以及细节修复的难题,相较于所选修复算法最优数据,在掩码面积为5%~20%时,峰值信噪比提高了3.312,在掩码面积为5%~80%时,平均峰值信噪比提高了1.02。 展开更多
关键词 敦煌壁画修复 多阶段堆叠 大感受野 多头嵌套 多分支融合
下载PDF
融合监督注意力模块和跨阶段特征融合的图像修复改进网络
11
作者 黄巧玲 郑伯川 +1 位作者 丁梓成 吴泽东 《计算机应用》 CSCD 北大核心 2024年第2期572-579,共8页
非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两... 非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两阶段网络模型上,引入了SAM与CSFF模块。SAM通过提供真实图像监督信号,监督上阶段输出特征,确保传入下阶段特征信息的有效性。CSFF将上阶段编码器-解码器的特征融合后送入下阶段的编码器,以弥补上阶段修复中特征信息的损失。实验结果表明,在缺失区域占比为1%~10%时,相较于基线模型Gconv,Gconv_CS在CelebA-HQ数据集上峰值信噪比(PSNR)和结构相似性指数(SSIM)分别提高了1.5%和0.5%,Fréchet起始距离(FID)和L1损失分别降低了21.8%、14.8%;在Place2数据集上,前2个指标分别提高了26.7%和0.8%,后2个指标分别降低了7.9%、37.9%。将Gconv_CS用于去除大熊猫面部遮挡物时,取得了较好的修复视觉效果。 展开更多
关键词 图像修复 两阶段网络 跨阶段特征融合 监督注意力模块 门控卷积
下载PDF
基于深度学习的遥感目标检测技术 被引量:4
12
作者 章程军 胡晓兵 +1 位作者 魏上云 郭爽 《计算机工程与设计》 北大核心 2024年第2期594-600,共7页
针对遥感目标检测精度不足,提出一种改进YOLOv5s遥感目标检测算法。主干网络采用CSP-D模块进行特征提取,充分利用深层和浅层特征进行特征增强;颈部网络采用BiFPN结构进行特征融合,提高多尺度特征信息融合效率。实验结果表明,针对遥感目... 针对遥感目标检测精度不足,提出一种改进YOLOv5s遥感目标检测算法。主干网络采用CSP-D模块进行特征提取,充分利用深层和浅层特征进行特征增强;颈部网络采用BiFPN结构进行特征融合,提高多尺度特征信息融合效率。实验结果表明,针对遥感目标数据集DIOR,改进YOLOv5s网络平均准确率均值(mAP)提升2.1%,不同目标类别平均准确率(AP)均有提升,缓解原网络检测存在的漏检误检问题,改进网络检测速度仍能满足实时性要求,具有更优的检测性能。 展开更多
关键词 遥感图像 目标检测 YOLOv5s 特征增强 多尺度特征融合 深度学习 单阶段网络
下载PDF
基于图像融合的不同成熟阶段苹果果实识别
13
作者 刘茗洋 崔凯 +1 位作者 宫金良 张彦斐 《华南农业大学学报》 CSCD 北大核心 2024年第2期293-303,共11页
【目的】针对复杂农业环境中不同成熟阶段苹果目标识别困难的问题,研究一种基于图像融合的苹果识别算法。【方法】采用保边性能较好的均值漂移滤波对图像进行预处理,滤除少量背景噪声。分别从RGB颜色空间和YIQ颜色空间提取R-G分量和I分... 【目的】针对复杂农业环境中不同成熟阶段苹果目标识别困难的问题,研究一种基于图像融合的苹果识别算法。【方法】采用保边性能较好的均值漂移滤波对图像进行预处理,滤除少量背景噪声。分别从RGB颜色空间和YIQ颜色空间提取R-G分量和I分量特征图像,采用像素级图像融合算法融合2幅特征图像信息,突出显示果实目标区域。利用Otsu自适应阈值算法获得最佳阈值,将目标苹果从背景中分割出来。为识别苹果目标,提出一种基于改进梯度场的Hough变换圆检测算法,通过引入形态学重建算法清理背景中残留的小面积区域,提高检测效率;同时以分割的苹果二值图像为判断标准构造剔除虚假圆算法,避免检测出现虚假目标。【结果】对采集到的50幅未完全成熟的苹果图像和50幅完全成熟的苹果图像进行识别,并与最小外接圆法进行对比,试验结果表明,本文算法平均识别时间为0.367 s,对完全裸露果实、被遮挡面积≤1/2果实和被遮挡面积>1/2果实的识别正确率分别为100%、92.46%,和81.87%,整体识别准确率比最小外接圆算法提高了11.43个百分点。本文算法圆心相对误差均值和半径相对误差均值分别为0.216和0.048%,最小外接圆算法圆心相对误差均值和半径相对误差均值分别为0.508和0.370%。【结论】本文提出的方法能够快速识别苹果目标,具有较高精度和效率的果实定位,可以服务于苹果采摘机器人进行果实采摘。 展开更多
关键词 苹果 图像融合 HOUGH变换 成熟阶段
下载PDF
基于异质属性融合的危重疾病二阶段预测模型
14
作者 詹少强 曾安 +2 位作者 张逸群 孙鸿涛 张小波 《计算机与现代化》 2024年第1期67-73,共7页
随着电子健康记录(Electronic Health Record,EHR)的出现与广泛应用,基于EHR数据的预测模型可以起到早期检测和干预疾病的作用。异质属性在EHR数据中普遍存在,但是难以做到深度利用,因此可通过对数据样本进行异质属性融合的方法,为后续... 随着电子健康记录(Electronic Health Record,EHR)的出现与广泛应用,基于EHR数据的预测模型可以起到早期检测和干预疾病的作用。异质属性在EHR数据中普遍存在,但是难以做到深度利用,因此可通过对数据样本进行异质属性融合的方法,为后续模型训练提供信息丰富的数据表征基础。本文设计一种高效的二阶段预测模型,用于解决重疾预测中存在的时效与成本等问题。该模型的第一阶段对病例样本进行粗粒度预测,将危重程度低的病例进行疾病初筛,起到提前分流病人的作用;第二阶段模型则基于第一阶段的粗滤结果,对潜在的危重病例进行更细粒度的预测。通过实验验证,经过异质属性融合处理后,在选择前6个时间点构造非时序模型时,二阶段模型可以较好地兼具疾病初筛以及疾病预测的效果。 展开更多
关键词 异质属性融合 疾病初筛 二阶段模型
下载PDF
基于多级残差融合的复杂纹理光场图像深度估计
15
作者 赵以 赵娟宁 孙连山 《智能计算机与应用》 2024年第2期100-105,共6页
光场的深度信息可以通过深度学习的光场深度估计算法计算,在图像视差、光场图像边缘以及光场图像的复杂纹理区域,获取高精度深度值仍然具有一定局限性。本文提出了一种用于光场图像深度估计的多级残差融合网络,通过组合残差模块提取多... 光场的深度信息可以通过深度学习的光场深度估计算法计算,在图像视差、光场图像边缘以及光场图像的复杂纹理区域,获取高精度深度值仍然具有一定局限性。本文提出了一种用于光场图像深度估计的多级残差融合网络,通过组合残差模块提取多层次的残差特征,在保持网络深度的同时提升了网络对特征的表征能力。利用多级残差融合模块对多层次的残差特征进行融合,以获得包含浅层纹理信息和深层语义信息的融合特征。利用本文方法对HCI4D光场数据集进行处理,图像深度估计的均方误差指标达到1.471,不良像素率指标达到4.208,该实验结果表明本文方法在处理具有复杂遮挡的光场图像区域方面具有良好的处理效果。 展开更多
关键词 光场图像 深度估计 组合残差模块 多级残差融合 复杂纹理
下载PDF
基于自注意力与双向特征融合的道路障碍物检测方法
16
作者 李婷 赵尔敦 杨军 《计算机科学》 CSCD 北大核心 2024年第S02期277-281,共5页
随着科技的飞速发展,辅助驾驶技术已经成为汽车行业未来发展的重要方向。在基于图像的道路障碍物检测中,现有方法对尺度变化大的目标、小目标和存在遮挡目标的检测能力有限,常出现误判和漏判等问题。针对此问题,提出了一种基于自注意力... 随着科技的飞速发展,辅助驾驶技术已经成为汽车行业未来发展的重要方向。在基于图像的道路障碍物检测中,现有方法对尺度变化大的目标、小目标和存在遮挡目标的检测能力有限,常出现误判和漏判等问题。针对此问题,提出了一种基于自注意力与双向特征融合的道路障碍物检测方法(CoXt-FCOS)。该方法在主干特征提取网络中引入分组的自注意力机制模块CoXT,以增强网络的全局信息捕获能力;为解决遮挡问题,引入跨阶段金字塔池化模块SPPCSPC;在特征融合模块中,引入路径增强网络,形成双向特征融合模块ESPAFPN,提升网络对小目标的感知能力。实验结果表明,CoXT-FCOS模型的精度较高,在CODA数据集上的mAP达到了88%,能够更准确地检测出道路上的障碍物。 展开更多
关键词 障碍物检测 自动驾驶 FCOS 自注意力机制 特征融合
下载PDF
基于信息融合和多粒度级联森林模型的挖掘机作业阶段智能识别
17
作者 苏德赢 王少杰 +2 位作者 卜祥建 饶红艳 侯亮 《工程设计学报》 CSCD 北大核心 2024年第1期42-49,共8页
为了解决挖掘机作业阶段识别方法可靠性较低的问题,提出了一种基于信息融合和多粒度级联森林模型(information fusion and multi-granularity cascade forest model,IFMCFM)的智能识别方法。利用信息融合技术将挖掘机作业阶段的类别概... 为了解决挖掘机作业阶段识别方法可靠性较低的问题,提出了一种基于信息融合和多粒度级联森林模型(information fusion and multi-granularity cascade forest model,IFMCFM)的智能识别方法。利用信息融合技术将挖掘机作业阶段的类别概率向量与高重要度特征进行融合,形成新的识别特征;将新特征输入级联森林模型,采用不同比例的训练集对模型进行训练并对识别结果进行分析;将IFMCFM的识别结果与DAGSVM(directed acyclic graph support vector machine,有向无环图支持向量机)、PCA-SVM(support vector machine based on principal component analysis,基于主成分分析的支持向量机)、LIBSVM(library for support vector machines,支持向量机库)和LSTM(long short-term memory,长短期记忆)的识别结果进行对比。研究结果表明:当训练集比例为80%时,IFMCFM的识别准确率、召回率和F1(精确度和召回率的调和平均数)指标分别为95.00%,95.17%和95.02%,识别效果较优;相比于其他识别模型,IFMCFM的识别准确性和可靠性最高。IFMCFM可以有效地识别挖掘机作业阶段,具有较高的应用价值。 展开更多
关键词 挖掘机 作业阶段 智能识别 信息融合 多粒度级联森林模型
下载PDF
单阶段实例分割——从局部到整体的网络结构研究综述
18
作者 周涛 石道宗 +3 位作者 赵雅楠 张祥祥 杜玉虎 陆惠玲 《中国科技论文》 CAS 2024年第2期131-142,共12页
单阶段实例分割是近年来深度学习领域的研究热点,其通过将目标检测和目标分割并行的方式实现图像的实例级分割,该方法目前已被广泛应用于图像目标分割领域。首先,阐述了单阶段实例分割基本原理。然后,从局部和整体2个方面对单阶段实例... 单阶段实例分割是近年来深度学习领域的研究热点,其通过将目标检测和目标分割并行的方式实现图像的实例级分割,该方法目前已被广泛应用于图像目标分割领域。首先,阐述了单阶段实例分割基本原理。然后,从局部和整体2个方面对单阶段实例分割的网络结构进行梳理,在局部网络结构方面,从特征提取、特征融合、特征预测3个方面进行归纳,其中,在特征预测部分,按照有锚框到无锚框的思路对目标边界框的生成方式进行分类,按照全局掩膜到局部掩膜的思路对目标掩膜的表示方式进行分类,全局掩膜包括原型系数方法、目标位置方法和目标边界方法,局部掩膜包括目标轮廓方法、目标位置方法和目标特征方法;在整体网络结构方面,对22个主流的网络结构进行总结。接着,归纳了单阶段实例分割在医学图像分割、视频图像分割、遥感图像分割等应用领域的发展现状。最后,对单阶段实例分割的发展方向进行展望。 展开更多
关键词 单阶段实例分割 特征提取 特征融合 特征预测 目标边界框 目标掩膜
下载PDF
基于改进HRNet的牛体关键点检测算法
19
作者 赵雪莲 张继凯 +2 位作者 何一豪 曾翔皓 庄琦 《内蒙古科技大学学报》 CAS 2024年第2期172-177,共6页
针对现有关键点检测算法在复杂背景下检测精度低、高运算量等问题,提出一种轻量级关键点检测模型SE-HRNet。首先设计2种轻量型模块:SECAneck模块和SECAblock模块,在保持网络性能的同时减低计算参数,加快训练速度。其次,整合空间注意力... 针对现有关键点检测算法在复杂背景下检测精度低、高运算量等问题,提出一种轻量级关键点检测模型SE-HRNet。首先设计2种轻量型模块:SECAneck模块和SECAblock模块,在保持网络性能的同时减低计算参数,加快训练速度。其次,整合空间注意力机制于多分辨率融合阶段,使得模型对于不易检测到的关键点的定位和识别更为敏感。在自制牛体关键点数据集上进行实验评估,结果表明:改进后的HRNet网络比原网络参数量和运算浮点数分别减少了18.8 M和5.2 G,平均精度达到了93.2%,平均召回率达到了91.5%,每秒帧数(FPS)达到了36.3。 展开更多
关键词 关键点检测 高分辨率网络 注意力机制 多分辨率融合阶段
下载PDF
多特征融合驱动的聚类分阶段剩余寿命预测
20
作者 赵文燕 赵舜 李雅婧 《机械设计与制造工程》 2024年第4期94-98,共5页
滚动轴承的剩余寿命预测对于机械设备的运行有着重要的意义,而过多的特征导致滚动轴承剩余寿命的预测精度降低。提出了一种多特征融合驱动的聚类分阶段剩余寿命预测方法,首先针对过多的冗余特征构建了基于评估指标的健康指标,用于描述... 滚动轴承的剩余寿命预测对于机械设备的运行有着重要的意义,而过多的特征导致滚动轴承剩余寿命的预测精度降低。提出了一种多特征融合驱动的聚类分阶段剩余寿命预测方法,首先针对过多的冗余特征构建了基于评估指标的健康指标,用于描述轴承的退化过程;其次针对单一的退化轨迹无法精准地表征轴承健康状态的问题,提出了一种聚类阶段划分的方法,进行了轴承不同阶段的划分;然后提出了一种分阶段剩余寿命预测模型,在线识别当前阶段并准确预测轴承的剩余寿命;最后采用西安交通大学轴承数据集进行轴承剩余寿命预测,验证了所提方法的有效性与优越性。 展开更多
关键词 滚动轴承 多特征融合 阶段划分 在线状态识别 剩余寿命
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部