Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these met...Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy(CFL)numbers,making them unstable when modeling with large time sampling intervals or small grid spacings.To solve this problem,we extend a stable SGFD scheme by controlling SGFD dispersion relations and maximizing the maximum CFL numbers.First,to improve modeling stability,we minimize the error between the FD dispersion relation and the exact relation in the given wave-number region,and make the FD dispersion approach a given function outside the given wave-number area,thus breaking the conventional limits of the maximum CFL number.Second,to obtain high modeling accuracy,we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients.In addition,the hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable weighting coefficient for the proposed scheme.Theoretical derivation and numerical modeling demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD scheme when adopting a small maximum effective wavenumber,indicating that the proposed scheme improves stability during the modeling.展开更多
3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m...3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.展开更多
A new staggered isolated system developed from the mid-story isolated system is the new staggered story isolated system. There are not many studies on this structure currently. In this study, an 18-story new staggered...A new staggered isolated system developed from the mid-story isolated system is the new staggered story isolated system. There are not many studies on this structure currently. In this study, an 18-story new staggered story isolated system model is established using SAP2000. The dynamic nonlinear dynamic alternate method is used to analyze the structure against progressive collapse. Results show that the structure has good resistance to progressive collapse, and there is no progressive collapse under each working condition. The progressive collapse does not occur for the case of removing only one vertical structural member of the new staggered of isolated system. The side column has big influence on this isolated structures’ progressive collapse;the removal of vertical structural member of the isolation layer has less impact on the structure than the removal of the bottom vertical structural member. After the removing of the member, the internal force of the structure will be redistributed, and the axial force of the adjacent columns will change obviously, showing a trend of “near large and far small”.展开更多
The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stif...The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases.展开更多
The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid interv...The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid intervals. In this study, the cosine-modulated binomial window function (CMBWF)-based staggered-grid finite-difference method is proposed. Two new parameters, the modulated time and modulated range are used in the new window function and by adjusting these two parameters we obtain different characteristics of the main and side lobes of the amplitude response. Numerical dispersion analysis and elastic wavefield forward modeling suggests that the CMBWF method is more precise and less computationally costly than the conventional Taylor series expansion staggered-grid finite-difference method.展开更多
Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulatio...Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method. The scheme is developed using a fourth-order spatial and a second-order temporal operator. Then, we define a stability coefficient (SC) and calculate its maximum value under the stability condition. Based on the dispersion relationship, we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles, stability coefficients, and orders. We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model. Additionally, the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures.展开更多
Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transfo...Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.展开更多
Based on the three-phase theory proposed by Santos, acoustic wave propagation in a poroelastic medium saturated by two immiscible fluids was simulated using a staggered high-order finite-difference algorithm with a ti...Based on the three-phase theory proposed by Santos, acoustic wave propagation in a poroelastic medium saturated by two immiscible fluids was simulated using a staggered high-order finite-difference algorithm with a time partition method, which is firstly applied to such a three-phase medium. The partition method was used to solve the stiffness problem of the differential equations in the three-phase theory. Considering the effects of capillary pressure, reference pressure and coupling drag of two fluids in pores, three compressional waves and one shear wave predicted by Santos have been correctly simulated. Influences of the parameters, porosity, permeability and gas saturation on the velocities and amplitude of three compressional waves were discussed in detail. Also, a perfectly matched layer (PML) absorbing boundary condition was firstly implemented in the three-phase equations with a staggered-grid high-order finite-difference. Comparisons between the proposed PML method and a commonly used damping method were made to validate the efficiency of the proposed boundary absorption scheme. It was shown that the PML works more efficiently than the damping method in this complex medium. Additionally, the three-phase theory is reduced to the Biot's theory when there is only one fluid left in the pores, which is shown in Appendix. This reduction makes clear that three-phase equation systems are identical to the typical Biot's equations if the fluid saturation for either of the two fluids in the pores approaches to zero.展开更多
Numerical simulation in transverse isotropic media with tilted symmetry axis(TTI) using the standard staggered-grid finite-difference scheme(SSG)results in errors caused by averaging or interpolation. In order to ...Numerical simulation in transverse isotropic media with tilted symmetry axis(TTI) using the standard staggered-grid finite-difference scheme(SSG)results in errors caused by averaging or interpolation. In order to eliminate the errors, a method of rotated staggered-grid finite-difference scheme(RSG) is proposed. However, the RSG brings serious numerical dispersion. The compact staggered-grid finite-difference scheme(CSG) is an implicit difference scheme, which use fewer grid points to suppress dispersion more effectively than the SSG. This paper combines the CSG with the RSG to derive a rotated staggered-grid compact finite-difference scheme(RSGC). The numerical experiments indicate that the RSGC has weaker numerical dispersion and better accuracy than the RSG.展开更多
In modelling elastic wave propagation in a porous medium, when the ratio between the fluid viscosity and the medium permeability is comparatively large, the stiffness problem of Blot's poroelastic equations will be e...In modelling elastic wave propagation in a porous medium, when the ratio between the fluid viscosity and the medium permeability is comparatively large, the stiffness problem of Blot's poroelastic equations will be encountered. In the paper, a partition method is developed to solve the stiffness problem with a staggered high-order finite-difference. The method splits the Biot equations into two systems. One is stiff, and solved analytically, the other is nonstiff, and solved numerically by using a high-order staggered-grid finite-difference scheme. The time step is determined by the staggered finite-difference algorithm in solving the nonstiff equations, thus a coarse time step may be employed. Therefore, the computation efficiency and computational stability are improved greatly. Also a perfect by matched layer technology is used in the split method as absorbing boundary conditions. The numerical results are compared with the analytical results and those obtained from the conventional staggered-grid finite-difference method in a homogeneous model, respectively. They are in good agreement with each other. Finally, a slightly more complex model is investigated and compared with related equivalent model to illustrate the good performance of the staggered-grid finite-difference scheme in the partition method.展开更多
The staggered-grid finite-difference (SGFD) method has been widely used in seismic forward modeling. The precision of the forward modeling results directly affects the results of the subsequent seismic inversion and...The staggered-grid finite-difference (SGFD) method has been widely used in seismic forward modeling. The precision of the forward modeling results directly affects the results of the subsequent seismic inversion and migration. Numerical dispersion is one of the problems in this method. The window function method can reduce dispersion by replacing the finite-difference operators with window operators, obtained by truncating the spatial convolution series of the pseudospectral method. Although the window operators have high precision in the low-wavenumber domain, their precision decreases rapidly in the high-wavenumber domain. We develop a least squares optimization method to enhance the precision of operators obtained by the window function method. We transform the SGFD problem into a least squares problem and find the best solution iteratively. The window operator is chosen as the initial value and the optimized domain is set by the error threshold. The conjugate gradient method is also adopted to increase the stability of the solution. Approximation error analysis and numerical simulation results suggest that the proposed method increases the precision of the window function operators and decreases the numerical dispersion.展开更多
Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs t...Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs to be stored,and then accessed to compute the correlation with the backward-propagated wavefield.Boundary-value methods reconstruct the source wavefield using saved boundary wavefields and can significantly reduce the storage requirements.However,the existing boundary-value methods are based on the explicit finite-difference(FD)approximations of the spatial derivatives.Implicit FD methods exhibit greater accuracy and thus allow for a smaller operator length.We develop two(an accuracy-preserving and a memory-efficient)wavefield reconstruction schemes based on an implicit staggered-grid FD(SFD)operator.The former uses boundary wavefields at M layers of grid points and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield for a(2M+2)th-order implicit SFD operator.The latter applies boundary wavefields at N layers of grid points,a linear combination of wavefields at M–N layers of grid points,and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield(0≤N<M).The required memory of accuracy-preserving and memory-efficient schemes is(M+1)/M and(N+2)/M times,respectively,that of the explicit reconstruction scheme.Numerical results reveal that the accuracy-preserving scheme can achieve accurate reconstruction at the cost of storage.The memory-efficient scheme with N=2 can obtain plausible reconstructed wavefields and images,and the storage amount is 4/(M+1)of the accuracy-preserving scheme.展开更多
The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D), three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the...The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D), three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the arbitrary tilt anisotropic media; and derives a perfectly matched absorbing layer (PML) boundary condition and its stag- gered-grid any even-order accurate difference scheme in the 2D arbitrary tilt anisotropic media. The results of nu- merical modeling indicate that the modeling precision is high, the calculation efficiency is satisfactory and the absorbing boundary condition is better. The wave-front shapes of elastic waves are complex in the anisotropic media, and the velocity of qP wave is not always faster than that of qS wave. The wave-front triplication of qS wave and its events in both reflected domain and propagated domain, which are not commonly hyperbola, is a common phenomenon. When the symmetry axis is tilted in the TI media, the phenomenon of S-wave splitting is clearly observed in the snaps of three components and synthetic seismograms, and the events of all kinds of waves are asymmetric.展开更多
Acoustic-elastic coupled media is often encountered in most marine explorations, and accurate simulation of acoustic-elastic coupled media is of great significance. At present, the study of acoustic-elastic coupled me...Acoustic-elastic coupled media is often encountered in most marine explorations, and accurate simulation of acoustic-elastic coupled media is of great significance. At present, the study of acoustic-elastic coupled media still assumes that the solid of the acoustic-elastic coupled media is isotropic, but this assumption is not in accordance with the actual situation. In this paper, we derive the solid media of acoustic-elastic coupled media from isotropic media to anisotropic media, and propose an acoustic-elastic coupled medium based ontransverse isotropic media with vertical symmetric axes(VTI) to improve the accuracy of forward modeling. Based on the relationship between the Thomsen parameter and the coefficient matrix of the anisotropic elastic wave equation, we transform the Thomson parameter into a velocity model with anisotropic properties. We use a staggered grid finite difference method to simulate the propagation of a wavefield in a three-dimensional acoustic-elastic coupled media. We obtain the snapshots of the wave field when the solid of the acoustic-elastic coupled media is an isotropic medium and a VTI media. When the solid of the acoustic-elastic coupled media is considered VTI media, we can observe the qP wave and qS wave that cannot be observed in the isotropic medium from the wave field snapshot. We can also find that the seismic records obtained by the method we use are more realistic. The algorithm proposed in this paper is of great significance for high-precision ocean numerical simulation.展开更多
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this...In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.展开更多
The local arc-length method is employed to control the incremental loading procedure for phase-field brittle fracture modeling.An improved staggered algorithm with energy and damage iterative tolerance convergence cri...The local arc-length method is employed to control the incremental loading procedure for phase-field brittle fracture modeling.An improved staggered algorithm with energy and damage iterative tolerance convergence criteria is developed based on the residuals of displacement and phase-field.The improved staggered solution scheme is implemented in the commercial software ABAQUS with user-defined element subroutines.The layered system of finite elements is utilized to solve the coupled elastic displacement and phase-field fracture problem.A one-element benchmark test compared with the analytical solution was conducted to validate the feasibility and accuracy of the developed method.Our study shows that the result calculated with the developed method does not depend on the selected size of loading increments.The results of several numerical experiments show that the improved staggered algorithm is efficient for solving the more complex brittle fracture problems.展开更多
The photo-induced buckling of axially periodic glassy nematic films with alternating stripped director domains is explored by the F¨oppl-von K′arm′an plate theory along with a modified kinetics approach.The eff...The photo-induced buckling of axially periodic glassy nematic films with alternating stripped director domains is explored by the F¨oppl-von K′arm′an plate theory along with a modified kinetics approach.The effects of domain widths on the critical light intensity as well as the buckling morphology are examined numerically.It is found that in most cases the buckled film forms regularly aligned dimples and protrusions,but shows large scale bending perpendicular to the periodic axis if the widths of the stripes are nearly the same.In addition,change in light intensity is shown to alter the wavenumber of the buckling pattern.These results are expected helpful to the design of shape-shifting structures with glassy nematic films.展开更多
Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of t...Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution.展开更多
Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a...Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.展开更多
基金This research is supported by the National Natural Science Foundation of China(NSFC)under contract no.42274147.
文摘Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy(CFL)numbers,making them unstable when modeling with large time sampling intervals or small grid spacings.To solve this problem,we extend a stable SGFD scheme by controlling SGFD dispersion relations and maximizing the maximum CFL numbers.First,to improve modeling stability,we minimize the error between the FD dispersion relation and the exact relation in the given wave-number region,and make the FD dispersion approach a given function outside the given wave-number area,thus breaking the conventional limits of the maximum CFL number.Second,to obtain high modeling accuracy,we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients.In addition,the hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable weighting coefficient for the proposed scheme.Theoretical derivation and numerical modeling demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD scheme when adopting a small maximum effective wavenumber,indicating that the proposed scheme improves stability during the modeling.
基金The authors thank the funds supported by the China National Nuclear Corporation under Grants Nos.WUQNYC2101 and WUHTLM2101-04National Natural Science Foundation of China(42074132,42274154).
文摘3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.
文摘A new staggered isolated system developed from the mid-story isolated system is the new staggered story isolated system. There are not many studies on this structure currently. In this study, an 18-story new staggered story isolated system model is established using SAP2000. The dynamic nonlinear dynamic alternate method is used to analyze the structure against progressive collapse. Results show that the structure has good resistance to progressive collapse, and there is no progressive collapse under each working condition. The progressive collapse does not occur for the case of removing only one vertical structural member of the new staggered of isolated system. The side column has big influence on this isolated structures’ progressive collapse;the removal of vertical structural member of the isolation layer has less impact on the structure than the removal of the bottom vertical structural member. After the removing of the member, the internal force of the structure will be redistributed, and the axial force of the adjacent columns will change obviously, showing a trend of “near large and far small”.
文摘The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases.
基金supported by the National Major Research Equipment Development Projects(No.ZDYZ2012-1-02-04)the National Natural Science Foundation of China(No.41474106)
文摘The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid intervals. In this study, the cosine-modulated binomial window function (CMBWF)-based staggered-grid finite-difference method is proposed. Two new parameters, the modulated time and modulated range are used in the new window function and by adjusting these two parameters we obtain different characteristics of the main and side lobes of the amplitude response. Numerical dispersion analysis and elastic wavefield forward modeling suggests that the CMBWF method is more precise and less computationally costly than the conventional Taylor series expansion staggered-grid finite-difference method.
基金Supported by the National Natural Science Foundation of China(Nos. 41206043, 40930845)the Open Foundation of Key Laboratory of Marine Geology and Environment of Chinese Academy of Sciences(No. MGE2011KG07)+1 种基金the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-229)the National Basic Research Program of China (973 Program) (No. 2009CB219505)
文摘Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method. The scheme is developed using a fourth-order spatial and a second-order temporal operator. Then, we define a stability coefficient (SC) and calculate its maximum value under the stability condition. Based on the dispersion relationship, we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles, stability coefficients, and orders. We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model. Additionally, the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures.
基金supported by the National Nature Science Foundation of China(Nos.41504102 and 41604037)National Science and Technology Major Project(No.2016ZX05015-006)Yangtze University Youth Found(No.2015cqn32)
文摘Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.
基金the Key Program of the National Natural Science Foundation of China (Grant No. 10534040)the National Natural Science Foundation of China (Grant No. 10674148)
文摘Based on the three-phase theory proposed by Santos, acoustic wave propagation in a poroelastic medium saturated by two immiscible fluids was simulated using a staggered high-order finite-difference algorithm with a time partition method, which is firstly applied to such a three-phase medium. The partition method was used to solve the stiffness problem of the differential equations in the three-phase theory. Considering the effects of capillary pressure, reference pressure and coupling drag of two fluids in pores, three compressional waves and one shear wave predicted by Santos have been correctly simulated. Influences of the parameters, porosity, permeability and gas saturation on the velocities and amplitude of three compressional waves were discussed in detail. Also, a perfectly matched layer (PML) absorbing boundary condition was firstly implemented in the three-phase equations with a staggered-grid high-order finite-difference. Comparisons between the proposed PML method and a commonly used damping method were made to validate the efficiency of the proposed boundary absorption scheme. It was shown that the PML works more efficiently than the damping method in this complex medium. Additionally, the three-phase theory is reduced to the Biot's theory when there is only one fluid left in the pores, which is shown in Appendix. This reduction makes clear that three-phase equation systems are identical to the typical Biot's equations if the fluid saturation for either of the two fluids in the pores approaches to zero.
文摘Numerical simulation in transverse isotropic media with tilted symmetry axis(TTI) using the standard staggered-grid finite-difference scheme(SSG)results in errors caused by averaging or interpolation. In order to eliminate the errors, a method of rotated staggered-grid finite-difference scheme(RSG) is proposed. However, the RSG brings serious numerical dispersion. The compact staggered-grid finite-difference scheme(CSG) is an implicit difference scheme, which use fewer grid points to suppress dispersion more effectively than the SSG. This paper combines the CSG with the RSG to derive a rotated staggered-grid compact finite-difference scheme(RSGC). The numerical experiments indicate that the RSGC has weaker numerical dispersion and better accuracy than the RSG.
基金Project supported by the "100 Talents Project" of the Chinese Academy of Sciences and the Major Program of the National Natural Science Foundation of China (Grant No 10534040).
文摘In modelling elastic wave propagation in a porous medium, when the ratio between the fluid viscosity and the medium permeability is comparatively large, the stiffness problem of Blot's poroelastic equations will be encountered. In the paper, a partition method is developed to solve the stiffness problem with a staggered high-order finite-difference. The method splits the Biot equations into two systems. One is stiff, and solved analytically, the other is nonstiff, and solved numerically by using a high-order staggered-grid finite-difference scheme. The time step is determined by the staggered finite-difference algorithm in solving the nonstiff equations, thus a coarse time step may be employed. Therefore, the computation efficiency and computational stability are improved greatly. Also a perfect by matched layer technology is used in the split method as absorbing boundary conditions. The numerical results are compared with the analytical results and those obtained from the conventional staggered-grid finite-difference method in a homogeneous model, respectively. They are in good agreement with each other. Finally, a slightly more complex model is investigated and compared with related equivalent model to illustrate the good performance of the staggered-grid finite-difference scheme in the partition method.
基金jointly supported by the NSF(No.41720104006)the Strategic Priority Research Program of the Chinese Academy of Sciences(A)(No.XDA14010303)+2 种基金the National Oil and Gas Project(Nos.2016ZX05002-005-007HZ and 2016ZX05014-001-008HZ)the Shandong Innovation Project(No.2017CXGC1602)the Qingdao Innovation Project(Nos.16-5-1-40-jch and 17CX05011)
文摘The staggered-grid finite-difference (SGFD) method has been widely used in seismic forward modeling. The precision of the forward modeling results directly affects the results of the subsequent seismic inversion and migration. Numerical dispersion is one of the problems in this method. The window function method can reduce dispersion by replacing the finite-difference operators with window operators, obtained by truncating the spatial convolution series of the pseudospectral method. Although the window operators have high precision in the low-wavenumber domain, their precision decreases rapidly in the high-wavenumber domain. We develop a least squares optimization method to enhance the precision of operators obtained by the window function method. We transform the SGFD problem into a least squares problem and find the best solution iteratively. The window operator is chosen as the initial value and the optimized domain is set by the error threshold. The conjugate gradient method is also adopted to increase the stability of the solution. Approximation error analysis and numerical simulation results suggest that the proposed method increases the precision of the window function operators and decreases the numerical dispersion.
基金partially supported by National Key R&D Program of China(2021YFA0716902)the National Natural Science Foundation of China(42174156)the Fundamental Research Funds for the Central Universities,CHD(300102261107)。
文摘Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs to be stored,and then accessed to compute the correlation with the backward-propagated wavefield.Boundary-value methods reconstruct the source wavefield using saved boundary wavefields and can significantly reduce the storage requirements.However,the existing boundary-value methods are based on the explicit finite-difference(FD)approximations of the spatial derivatives.Implicit FD methods exhibit greater accuracy and thus allow for a smaller operator length.We develop two(an accuracy-preserving and a memory-efficient)wavefield reconstruction schemes based on an implicit staggered-grid FD(SFD)operator.The former uses boundary wavefields at M layers of grid points and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield for a(2M+2)th-order implicit SFD operator.The latter applies boundary wavefields at N layers of grid points,a linear combination of wavefields at M–N layers of grid points,and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield(0≤N<M).The required memory of accuracy-preserving and memory-efficient schemes is(M+1)/M and(N+2)/M times,respectively,that of the explicit reconstruction scheme.Numerical results reveal that the accuracy-preserving scheme can achieve accurate reconstruction at the cost of storage.The memory-efficient scheme with N=2 can obtain plausible reconstructed wavefields and images,and the storage amount is 4/(M+1)of the accuracy-preserving scheme.
基金Fund Project of Key Lab of Geophysical Exploration of China National Petroleum Corporation (GPR0408).
文摘The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D), three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the arbitrary tilt anisotropic media; and derives a perfectly matched absorbing layer (PML) boundary condition and its stag- gered-grid any even-order accurate difference scheme in the 2D arbitrary tilt anisotropic media. The results of nu- merical modeling indicate that the modeling precision is high, the calculation efficiency is satisfactory and the absorbing boundary condition is better. The wave-front shapes of elastic waves are complex in the anisotropic media, and the velocity of qP wave is not always faster than that of qS wave. The wave-front triplication of qS wave and its events in both reflected domain and propagated domain, which are not commonly hyperbola, is a common phenomenon. When the symmetry axis is tilted in the TI media, the phenomenon of S-wave splitting is clearly observed in the snaps of three components and synthetic seismograms, and the events of all kinds of waves are asymmetric.
基金Supported by Major Project of National Science and Technology of China(No.2016ZX05026-002-003)National Natural Science Foundation of China(No.41374108)
文摘Acoustic-elastic coupled media is often encountered in most marine explorations, and accurate simulation of acoustic-elastic coupled media is of great significance. At present, the study of acoustic-elastic coupled media still assumes that the solid of the acoustic-elastic coupled media is isotropic, but this assumption is not in accordance with the actual situation. In this paper, we derive the solid media of acoustic-elastic coupled media from isotropic media to anisotropic media, and propose an acoustic-elastic coupled medium based ontransverse isotropic media with vertical symmetric axes(VTI) to improve the accuracy of forward modeling. Based on the relationship between the Thomsen parameter and the coefficient matrix of the anisotropic elastic wave equation, we transform the Thomson parameter into a velocity model with anisotropic properties. We use a staggered grid finite difference method to simulate the propagation of a wavefield in a three-dimensional acoustic-elastic coupled media. We obtain the snapshots of the wave field when the solid of the acoustic-elastic coupled media is an isotropic medium and a VTI media. When the solid of the acoustic-elastic coupled media is considered VTI media, we can observe the qP wave and qS wave that cannot be observed in the isotropic medium from the wave field snapshot. We can also find that the seismic records obtained by the method we use are more realistic. The algorithm proposed in this paper is of great significance for high-precision ocean numerical simulation.
基金partially supported by China National Major Science and Technology Project (Subproject No:2011ZX05024-001-03)
文摘In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.
基金supports by the National Key R&D Program of China(No.2018YFD1100401)the National Natural Science Foundation of China(No.51578142)+1 种基金the Fundamental Research Funds for the Central Universities(No.LEM21A03)Jiangsu Key Laboratory of Engineering Mechanics(Southeast University)are gratefully acknowledged.
文摘The local arc-length method is employed to control the incremental loading procedure for phase-field brittle fracture modeling.An improved staggered algorithm with energy and damage iterative tolerance convergence criteria is developed based on the residuals of displacement and phase-field.The improved staggered solution scheme is implemented in the commercial software ABAQUS with user-defined element subroutines.The layered system of finite elements is utilized to solve the coupled elastic displacement and phase-field fracture problem.A one-element benchmark test compared with the analytical solution was conducted to validate the feasibility and accuracy of the developed method.Our study shows that the result calculated with the developed method does not depend on the selected size of loading increments.The results of several numerical experiments show that the improved staggered algorithm is efficient for solving the more complex brittle fracture problems.
基金Project supported by the National Natural Science Foundation of China(No.12332011)。
文摘The photo-induced buckling of axially periodic glassy nematic films with alternating stripped director domains is explored by the F¨oppl-von K′arm′an plate theory along with a modified kinetics approach.The effects of domain widths on the critical light intensity as well as the buckling morphology are examined numerically.It is found that in most cases the buckled film forms regularly aligned dimples and protrusions,but shows large scale bending perpendicular to the periodic axis if the widths of the stripes are nearly the same.In addition,change in light intensity is shown to alter the wavenumber of the buckling pattern.These results are expected helpful to the design of shape-shifting structures with glassy nematic films.
基金This research was supported by the National Nature Science Foundation of China (No. 41074100) and the Program for NewCentury Excellent Talents in the University of the Ministry of Education of China (No. NCET- 10-0812).
文摘Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution.
基金supported by the National Natural Science Foundation of China(No.41474110)Shell Ph.D. Scholarship to support excellence in geophysical research
文摘Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.