Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis,...Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis, clinical evidence is limited. Objective: The purpose of this study is to provide high-quality evidence to support the effectiveness of the traditional Chinese hot and humid compress in the treatment of LDH with qi stagnation and blood stasis. Methods: From October 2021 to November 2023, 86 patients with LDH of qi stagnation and blood stasis type were recruited in our hospital and divided into a control (n = 43) and an observation group (n = 43) according to the random number table method. The control group was given routine clinical treatment, and the observation group was treated with the hot and humid compress therapy for two weeks. The visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, TCM syndrome score, serum interleukin-6 (IL-6), serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were observed and compared between the two groups before and after treatment, and the clinical efficacy of the two groups was evaluated. Results: After treatment, the VAS score, TCM symptom score, and serum IL-6, IL-1β, and TNF-α levels decreased in both groups (P P P P P Conclusions: The hot and humid compress of traditional Chinese medicine can effectively relieve pain, restore lumbar function, improve TCM syndromes, reduce the level of inflammatory factors, and have a curative effect in treating LDH.展开更多
In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suit...In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations,which are then solved numerically by a fourth–order Runge–Kutta method.It is found that the linear fluid velocity decreases with the enhancement of the porosity,boundary,and suction parameters.Conversely,it increases with the micropolar and injection parameters.The angular velocity grows with the boundary,porosity,and suction parameters,whereas it is reduced if the micropolar and injection parameters become larger.It is concluded that the thermal boundary layer extension increases with the injection parameter and decreases with the suction parameter.展开更多
Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has develop...Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has developed a fin-less control technology called Stagnation Pressure Reaction Control(SPRC)that takes stagnation pressure air and directs it sideways to control non-spinning projectiles.In a previous study,this technology was demonstrated at Mach 2 wind-tunnel conditions to achieve up to 1.5°controllable angle of incidence for a non-spinning,aerodynamically unstable projectile-like test object.In an operational scenario,the decelerating projectile will experience a decline in control force while the simultaneous forward shift of the center of pressure increases the need for control force.Furthermore,angles of incidence exceeding 1.5°will be experienced under realistic flight conditions,especially against maneuvering targets.This work addresses these challenges and presents an operational feasibility study for a practical application of SPRC in a non-spinning mid-caliber gun-launched projectile,using experiment data on control latency and force of the earlier study.It illustrates the combined effect of the control-and stability dynamics and underlines the potential of an SPRC projectile as a precisionoperation ammunition.This research revealed that SPRC technology can stabilize and control the hypothesized projectile in a direct fire scenario against stationary and maneuvering targets.展开更多
This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is...This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.展开更多
The theory of stagnation of collateral Qi(Chinese medicine refers to the most fundamental and subtle substances thatconstitute the human body and maintain life activities,and also has the meaning of physiological func...The theory of stagnation of collateral Qi(Chinese medicine refers to the most fundamental and subtle substances thatconstitute the human body and maintain life activities,and also has the meaning of physiological functions)originates from the theory of collateral disease,which refers to the deficiency of Qi in the body’s collaterals,the loss of Qi and blood,and the failure of stagnation of collateral Qi,which leads to the loss of Qi,blood and body fluid,and the formation of pathological products such as deficiency,depression,phlegm,blood stasis in the local area,and ultimately damage the pathological process of collaterals.Based on the in-depth study of the pathogenesis of collateral Qi stagnation and the previous study of meridian channels,we believe that the key pathogenesis of the formation,evolution and spread of malignant tumors is“collateral Qi deficiency stagnation,collateral Qi stagnation and collateral Qi decay”.As an important energy resonance channel of the body,meridians play a key role in the process of material transformation and energy metabolism.It is believed that the small focus caused by the pathogenesis of stagnation is the cause of malignant transformation of tumor,the reprogramming of energy metabolism induced by the lesion of collateral Qi is the basis of the progress of tumor pathogenesis,and the formation of tumor microenvironment regulated by the tumor toxin vena is the root of alienation of tumor development.Guided by this theory,focusing on the correlation between collateral Qi and tumor energy metabolism,using Professor Hua Baojin's treatment method of“Regulating Qi and detoxifying”to prescribe drugs can adjust collateral Qi function,achieve the relative balance of internal environment,and then inhibit the progress of tumor.Based on the above understanding,this study tries to enlighten new diagnosis and treatment ideas under the guidance of“stagnation of collateral Qi”in traditional Chinese medicine,in order to provide some theoretical support for the intervention of traditional Chinese medicine in the process of tumor development.展开更多
Objective:To Discuss the correlation between Hypersensitivity C-reactive Protein(Hs-CRP),Total Cholesterol(TC),Triglyceride(TG),negative emotion scale and TCM syndrome scores in“Double Heart Disease”patients with Qi...Objective:To Discuss the correlation between Hypersensitivity C-reactive Protein(Hs-CRP),Total Cholesterol(TC),Triglyceride(TG),negative emotion scale and TCM syndrome scores in“Double Heart Disease”patients with Qi stagnation blood stasis and heart gallbladder heat stagnation.Method:Fifty-two patients in Western Medicine Diagnosis of Double Heart Disease,in TCM syndrome identified as Qi stagnation blood stasis Heart gallbladder heat stagnation syndrome,detects it Hs-CRP,TC,TG levels by ELISA,use TCM Syndromes Scale to evaluate TCM Syndrome,use the Pittsburgh Sleep Quality Index(PSQI)and Self-rating symptom scale(SCL-90)to assess anxiety and sleep levels,analyze the correlation between TCM syndrome scores and Hs-CRP,TC,TG level,PSQI index,SCL-90 index.Result:There was a significant positive correlation between Hs-CRP,TG level and TCM Syndrome scores(P<0.05);TC level was postively correlated with TCM Syndrome scores,but there was no statistical significance(P>0.05);There was a significant positive correlation between PSQI index,SCL-90 index and TCM Syndrome scores(P<0.05).Conclusion:In“Double Heart Disease”patients with Qi stagnation blood stasis and heart gallbladder heat stagnation,there have characteristic syndrome changes in terms of inflammatory factor level,blood lipid level and negative emotion score;Which the above indexes can reflect the severity of TCM syndromes to a certain extent and provide the basis for the effective intervention treatment of TCM.展开更多
When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the ...When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the theoretical basis for the technology of hydro-jet fracturing. This paper analyzes the mechanism of generating pressure stagnation in water jet hole, and puts forward a new concept of hydroseal. Then, the distribution of pressure in the hole was simulated with the finite element method. The simulation results showed that the pressure in the hole was higher than that in the annulus. Also, the lower the annular pressure (confining pressure) and the higher the blasting pressure, the greater the pressure difference. An experiment indicated that the cement sample was lifted up under the pressure stagnation in the hole, which proved the finite element simulation results obviously.展开更多
This paper concerns the characteristics of heat and mass transfer in upper convected Maxwell fluid flow over a linear stretching sheet with solar radiation,viscous desperation and temperature based viscosity.After bou...This paper concerns the characteristics of heat and mass transfer in upper convected Maxwell fluid flow over a linear stretching sheet with solar radiation,viscous desperation and temperature based viscosity.After boundary layer approximation,the governing equations are achieved(namely Maxwell,upper convected material derivative,thermal and concentration diffusions).By using the self-similarity transformations the governing PDEs are converted into nonlinear ODEs and solved by RK-4 method in combination with Newton Raphson(shooting technique).The effects of developed parameters on velocity,temperature,concentration,fraction factor,heat and mass diffusions are exemplified through graphs and tabular form and are deliberated in detail.Numerical values of fraction factor,heat and mass transfer rates with several parameters are computed and examined.It is noticed that the temperature is more impactable for higher values of radiative heat transport,thermal conductivity and viscous dissipation.The comparison data for some limiting case are acquired and are originated to be in good agreement with previously published articles.展开更多
Objective: To evaluate the clinical effect and safety of Safflower Yellow injection (SYI) in treating coronary heart disease angina pectoris (OHD-AP) with Xin-blood stagnation syndrome (XBSS). Methods: Adopted...Objective: To evaluate the clinical effect and safety of Safflower Yellow injection (SYI) in treating coronary heart disease angina pectoris (OHD-AP) with Xin-blood stagnation syndrome (XBSS). Methods: Adopted was the multi-centered, randomized, positive parallel controlled method, 448 patients with CHD-AP-XBSS were enrolled and divided into two groups, 336 in the tested group treated with SYI and 112 in the control group treated with Salvia injection by intravenous dripping once a day for 14 days, so as to observe the conditions of angina, electrocardiogram, and therapeutic effect on traditinal Chinese medicine (TCM) symptoms as well as the safety of the treatment. Results: The significantly effective rate and total effective rate in the tested group were 60.06% (194/323) and 91.02 % (294/323) respectively; those in improvement of TOM symptoms were 40. 18% (129/321) and 75.23% (243/323) respectively, which were better than those in the control group (P〈0.01). Conclusion: SYI Injection is effective and safe in treating OHD-AP-XBSS.展开更多
The wavelet approach is introduced to study the influence of the natural convection stagnation point flow of the Williamson fluid in the presence of thermophysical and Brownian motion effects. The thermal radiation ef...The wavelet approach is introduced to study the influence of the natural convection stagnation point flow of the Williamson fluid in the presence of thermophysical and Brownian motion effects. The thermal radiation effects are considered along a permeable stretching surface. The nonlinear problem is simulated numerically by using a novel algorithm based upon the Chebyshev wavelets. It is noticed that the velocity of the Williamson fluid increases for assisting flow cases while decreases for opposing flow cases when the unsteadiness and suction parameters increase, and the magnetic effect on the velocity increases for opposing flow cases while decreases for assisting flow cases. When the thermal radiation parameter, the Dufour number, and Williamson’s fluid parameter increase, the temperature increases for both assisting and opposing flow cases. Meanwhile, the temperature decreases when the Prandtl number increases. The concentration decreases when the Soret parameter increases, while increases when the Schmidt number increases. It is perceived that the assisting force decreases more than the opposing force. The findings endorse the credibility of the proposed algorithm, and could be extended to other nonlinear problems with complex nature.展开更多
An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS...An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.展开更多
The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat tr...The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.展开更多
The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents ...The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.展开更多
The effect of variable viscosity and thermal conductivity on steady magnetohydrodynamic(MHD) heat and mass transfer flow of viscous and incompressible fluid near a stagnation point towards a permeable stretching she...The effect of variable viscosity and thermal conductivity on steady magnetohydrodynamic(MHD) heat and mass transfer flow of viscous and incompressible fluid near a stagnation point towards a permeable stretching sheet embedded in a porous medium are presented,taking into account thermal radiation and internal heat genberation/absorbtion.The stretching velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point.The Rosseland approximation is used to describe the radiative heat flux in the energy equation.The governing fundamental equations are first transformed into a system of ordinary differential equations using a scaling group of transformations and are solved numerically by using the fourth-order Rung-Kutta method with the shooting technique.A comparison with previously published work has been carried out and the results are found to be in good agreement.The results are analyzed for the effect of different physical parameters,such as the variable viscosity and thermal conductivity,the ratio of free stream velocity to stretching velocity,the magnetic field,the porosity,the radiation and suction/injection on the flow,and the heat and mass transfer characteristics.The results indicate that the inclusion of variable viscosity and thermal conductivity into the fluids of light and medium molecular weight is able to change the boundary-layer behavior for all values of the velocity ratio parameter λ except for λ = 1.In addition,the imposition of fluid suction increases both the rate of heat and mass transfer,whereas fluid injection shows the opposite effect.展开更多
The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is invest...The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of non-linear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases.展开更多
AIM To investigate the pathophysiologic basis of syndrome of Liver Qi stagnation and parameters for clinical differentiation. METHODS Plasma L ENK, AVP, ANP and serum gastrin were determined by RIA in 84 patients...AIM To investigate the pathophysiologic basis of syndrome of Liver Qi stagnation and parameters for clinical differentiation. METHODS Plasma L ENK, AVP, ANP and serum gastrin were determined by RIA in 84 patients with neurasthenia, mastodynia, chronic gastritis, and chronic cholecystitis presenting the same syndrome of Liver Qi stagnation in traditional Chinese medicine (TCM). Healthy subjects served as controls in comparison with patients having the same syndrome but with different diseases. RESULTS Among the patients with Liver Qi stagnation, the plasma L ENK, ANP and gastrin levels were 38 83ng/L ± 6 32ng/L , 104 11ng/L ± 29 01ng/L and 32 20ng/L ± 6 68ng/L , being significantly lower than those in the healthy controls ( t =3 34, 6 17, 4 48; P <0 01). The plasma AVP of the patient group ( 52 82ng/L ± 19 09ng/L ) was significantly higher than that of the healthy controls ( t =5 79, P <0 01). The above changes in patients having the same symptom complex but different diseases entities showed no significant differences, P >0 05. CONCLUSION The syndrome of Liver Qi stagnation is closely related to the emotional modulatory abnormality of the brain, with decrease of plasma L ENK, ANP and gastrin, and increase of plasma AVP as the important pathophysiologic basis.展开更多
Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorpti...Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.展开更多
In this research,the three-dimensional(3D)steady and incompressible laminar Homann stagnation point nanofluid flow over a porous moving surface is addressed.The disturbance in the porous medium has been characterized ...In this research,the three-dimensional(3D)steady and incompressible laminar Homann stagnation point nanofluid flow over a porous moving surface is addressed.The disturbance in the porous medium has been characterized by the Darcy-Forchheimer relation.The slip for viscous fluid is considered.The energy equation is organized in view of radiative heat flux which plays an important role in the heat transfer rate.The governing flow expressions are first altered into first-order ordinary ones and then solved numerically by the shooting method.Dual solutions are obtained for the velocity,skin friction coefficient,temperature,and Nusselt number subject to sundry flow parameters,magnetic parameter,Darcy-Forchheimer number,thermal radiation parameter,suction parameter,and dimensionless slip parameter.In this research,the main consideration is given to the engineering interest like skin friction coefficient(velocity gradient or surface drag force)and Nusselt number(temperature gradient or heat transfer rate)and discussed numerically through tables.In conclusion,it is noticed from the stability results that the upper branch solution(UBS)is more reliable and physically stable than the lower branch solution(LBS).展开更多
The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip. Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. ...The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip. Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. The governing physical problem is presented and transformed into a system of coupled nonlinear differential equations using suitable similarity transformations. These equations are then solved numerically using midpoint integration scheme along with Richardson extrapolation via Maple. Impact of relevant physical parameters on the dimensionless velocity and temperature profiles are portrayed through graphs. Physical quantities such as local skin frictions co-efficient and Nusselt numbers are tabularized.It is detected from numerical computations that kerosene-based nano fluids have better heat transfer capability compared with water-based nanofluids. Moreover it is found that water-based nanofluids offer less resistance in terms of skin friction than kerosene-based fluid. In order to authenticate our present study, the calculated results are compared with the prevailing literature and a considerable agreement is perceived for the limiting case.展开更多
In this study,the stagnation point transport of second grade fluid with linear stretching under the effects of variable thermal conductivity is considered.Induced magnetic field impact is also incorporated.The nonline...In this study,the stagnation point transport of second grade fluid with linear stretching under the effects of variable thermal conductivity is considered.Induced magnetic field impact is also incorporated.The nonlinear set of particle differential equations is converted into set of ordinary differential equations through appropriate transformation.The resulting equations are then resolved by optimal homotopy analysis method.The effect of pertinent parameters of interest on skin friction coefficient,temperature,induced magnetic field,velocity and local Nusselt number is inspected by generating appropriate plots.For numerical results,the built-in bvp4 c technique in computational software MATLAB is used for the convergence and residual errors of obtained series solution.It is perceived that the induced magnetic field is intensified by increasing β.It can also be observed that skin friction coefficient enhances with increasing value of magnetic parameter depending on the stretching ratio a/c.For the validness of the obtained results,a comparison has been made and an excellent agreement of current study with existing literature is found.展开更多
文摘Background: Although a number of studies have reported that the hot and humid compress from traditional Chinese medicine (TCM) is effective in treating lumbar disc herniation (LDH) with qi stagnation and blood stasis, clinical evidence is limited. Objective: The purpose of this study is to provide high-quality evidence to support the effectiveness of the traditional Chinese hot and humid compress in the treatment of LDH with qi stagnation and blood stasis. Methods: From October 2021 to November 2023, 86 patients with LDH of qi stagnation and blood stasis type were recruited in our hospital and divided into a control (n = 43) and an observation group (n = 43) according to the random number table method. The control group was given routine clinical treatment, and the observation group was treated with the hot and humid compress therapy for two weeks. The visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, TCM syndrome score, serum interleukin-6 (IL-6), serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were observed and compared between the two groups before and after treatment, and the clinical efficacy of the two groups was evaluated. Results: After treatment, the VAS score, TCM symptom score, and serum IL-6, IL-1β, and TNF-α levels decreased in both groups (P P P P P Conclusions: The hot and humid compress of traditional Chinese medicine can effectively relieve pain, restore lumbar function, improve TCM syndromes, reduce the level of inflammatory factors, and have a curative effect in treating LDH.
文摘In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations,which are then solved numerically by a fourth–order Runge–Kutta method.It is found that the linear fluid velocity decreases with the enhancement of the porosity,boundary,and suction parameters.Conversely,it increases with the micropolar and injection parameters.The angular velocity grows with the boundary,porosity,and suction parameters,whereas it is reduced if the micropolar and injection parameters become larger.It is concluded that the thermal boundary layer extension increases with the injection parameter and decreases with the suction parameter.
文摘Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has developed a fin-less control technology called Stagnation Pressure Reaction Control(SPRC)that takes stagnation pressure air and directs it sideways to control non-spinning projectiles.In a previous study,this technology was demonstrated at Mach 2 wind-tunnel conditions to achieve up to 1.5°controllable angle of incidence for a non-spinning,aerodynamically unstable projectile-like test object.In an operational scenario,the decelerating projectile will experience a decline in control force while the simultaneous forward shift of the center of pressure increases the need for control force.Furthermore,angles of incidence exceeding 1.5°will be experienced under realistic flight conditions,especially against maneuvering targets.This work addresses these challenges and presents an operational feasibility study for a practical application of SPRC in a non-spinning mid-caliber gun-launched projectile,using experiment data on control latency and force of the earlier study.It illustrates the combined effect of the control-and stability dynamics and underlines the potential of an SPRC projectile as a precisionoperation ammunition.This research revealed that SPRC technology can stabilize and control the hypothesized projectile in a direct fire scenario against stationary and maneuvering targets.
基金Project supported by the Executive Agency for Higher Education Research Development and Innovation Funding of Romania(No.PN-III-P4-PCE-2021-0993)。
文摘This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.
基金supported by Beijing Natural Science Foundation(No.7222296)Major research project of oncology of scientific and technological innovation project of China Academy of Chinese Medical Sciences(No.CI2021A01805).
文摘The theory of stagnation of collateral Qi(Chinese medicine refers to the most fundamental and subtle substances thatconstitute the human body and maintain life activities,and also has the meaning of physiological functions)originates from the theory of collateral disease,which refers to the deficiency of Qi in the body’s collaterals,the loss of Qi and blood,and the failure of stagnation of collateral Qi,which leads to the loss of Qi,blood and body fluid,and the formation of pathological products such as deficiency,depression,phlegm,blood stasis in the local area,and ultimately damage the pathological process of collaterals.Based on the in-depth study of the pathogenesis of collateral Qi stagnation and the previous study of meridian channels,we believe that the key pathogenesis of the formation,evolution and spread of malignant tumors is“collateral Qi deficiency stagnation,collateral Qi stagnation and collateral Qi decay”.As an important energy resonance channel of the body,meridians play a key role in the process of material transformation and energy metabolism.It is believed that the small focus caused by the pathogenesis of stagnation is the cause of malignant transformation of tumor,the reprogramming of energy metabolism induced by the lesion of collateral Qi is the basis of the progress of tumor pathogenesis,and the formation of tumor microenvironment regulated by the tumor toxin vena is the root of alienation of tumor development.Guided by this theory,focusing on the correlation between collateral Qi and tumor energy metabolism,using Professor Hua Baojin's treatment method of“Regulating Qi and detoxifying”to prescribe drugs can adjust collateral Qi function,achieve the relative balance of internal environment,and then inhibit the progress of tumor.Based on the above understanding,this study tries to enlighten new diagnosis and treatment ideas under the guidance of“stagnation of collateral Qi”in traditional Chinese medicine,in order to provide some theoretical support for the intervention of traditional Chinese medicine in the process of tumor development.
基金Beijing University of Traditional Chinese Medicine Fundamental Research Fund Project(No.2019-JYB-JS-174)Beijing Municipal Science and Technology Commission"Capital Characteristic Clinical Application Research"Project(No.Z161100000516136)。
文摘Objective:To Discuss the correlation between Hypersensitivity C-reactive Protein(Hs-CRP),Total Cholesterol(TC),Triglyceride(TG),negative emotion scale and TCM syndrome scores in“Double Heart Disease”patients with Qi stagnation blood stasis and heart gallbladder heat stagnation.Method:Fifty-two patients in Western Medicine Diagnosis of Double Heart Disease,in TCM syndrome identified as Qi stagnation blood stasis Heart gallbladder heat stagnation syndrome,detects it Hs-CRP,TC,TG levels by ELISA,use TCM Syndromes Scale to evaluate TCM Syndrome,use the Pittsburgh Sleep Quality Index(PSQI)and Self-rating symptom scale(SCL-90)to assess anxiety and sleep levels,analyze the correlation between TCM syndrome scores and Hs-CRP,TC,TG level,PSQI index,SCL-90 index.Result:There was a significant positive correlation between Hs-CRP,TG level and TCM Syndrome scores(P<0.05);TC level was postively correlated with TCM Syndrome scores,but there was no statistical significance(P>0.05);There was a significant positive correlation between PSQI index,SCL-90 index and TCM Syndrome scores(P<0.05).Conclusion:In“Double Heart Disease”patients with Qi stagnation blood stasis and heart gallbladder heat stagnation,there have characteristic syndrome changes in terms of inflammatory factor level,blood lipid level and negative emotion score;Which the above indexes can reflect the severity of TCM syndromes to a certain extent and provide the basis for the effective intervention treatment of TCM.
文摘When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the theoretical basis for the technology of hydro-jet fracturing. This paper analyzes the mechanism of generating pressure stagnation in water jet hole, and puts forward a new concept of hydroseal. Then, the distribution of pressure in the hole was simulated with the finite element method. The simulation results showed that the pressure in the hole was higher than that in the annulus. Also, the lower the annular pressure (confining pressure) and the higher the blasting pressure, the greater the pressure difference. An experiment indicated that the cement sample was lifted up under the pressure stagnation in the hole, which proved the finite element simulation results obviously.
基金funding this work through research groups program under grant number R.G.P-59/40.
文摘This paper concerns the characteristics of heat and mass transfer in upper convected Maxwell fluid flow over a linear stretching sheet with solar radiation,viscous desperation and temperature based viscosity.After boundary layer approximation,the governing equations are achieved(namely Maxwell,upper convected material derivative,thermal and concentration diffusions).By using the self-similarity transformations the governing PDEs are converted into nonlinear ODEs and solved by RK-4 method in combination with Newton Raphson(shooting technique).The effects of developed parameters on velocity,temperature,concentration,fraction factor,heat and mass diffusions are exemplified through graphs and tabular form and are deliberated in detail.Numerical values of fraction factor,heat and mass transfer rates with several parameters are computed and examined.It is noticed that the temperature is more impactable for higher values of radiative heat transport,thermal conductivity and viscous dissipation.The comparison data for some limiting case are acquired and are originated to be in good agreement with previously published articles.
文摘Objective: To evaluate the clinical effect and safety of Safflower Yellow injection (SYI) in treating coronary heart disease angina pectoris (OHD-AP) with Xin-blood stagnation syndrome (XBSS). Methods: Adopted was the multi-centered, randomized, positive parallel controlled method, 448 patients with CHD-AP-XBSS were enrolled and divided into two groups, 336 in the tested group treated with SYI and 112 in the control group treated with Salvia injection by intravenous dripping once a day for 14 days, so as to observe the conditions of angina, electrocardiogram, and therapeutic effect on traditinal Chinese medicine (TCM) symptoms as well as the safety of the treatment. Results: The significantly effective rate and total effective rate in the tested group were 60.06% (194/323) and 91.02 % (294/323) respectively; those in improvement of TOM symptoms were 40. 18% (129/321) and 75.23% (243/323) respectively, which were better than those in the control group (P〈0.01). Conclusion: SYI Injection is effective and safe in treating OHD-AP-XBSS.
基金Project supported by the National Natural Science Foundation of China(Nos.51709191,51706149,and 51606130)the Key Laboratory of Advanced Reactor Engineering and Safety,Ministry of Education of China(No.ARES-2018-10)the State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University of China(No.Skhl1803)
文摘The wavelet approach is introduced to study the influence of the natural convection stagnation point flow of the Williamson fluid in the presence of thermophysical and Brownian motion effects. The thermal radiation effects are considered along a permeable stretching surface. The nonlinear problem is simulated numerically by using a novel algorithm based upon the Chebyshev wavelets. It is noticed that the velocity of the Williamson fluid increases for assisting flow cases while decreases for opposing flow cases when the unsteadiness and suction parameters increase, and the magnetic effect on the velocity increases for opposing flow cases while decreases for assisting flow cases. When the thermal radiation parameter, the Dufour number, and Williamson’s fluid parameter increase, the temperature increases for both assisting and opposing flow cases. Meanwhile, the temperature decreases when the Prandtl number increases. The concentration decreases when the Soret parameter increases, while increases when the Schmidt number increases. It is perceived that the assisting force decreases more than the opposing force. The findings endorse the credibility of the proposed algorithm, and could be extended to other nonlinear problems with complex nature.
文摘An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.
文摘The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.
基金supported by National Natural Science Foundation of China(No.51977132)the Key Special Science and Technology Project of Liaoning Province(No.2020JH1/10100012)the General Program of the Education Department of Liaoning Province(No.LJKZ0126).
文摘The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.
文摘The effect of variable viscosity and thermal conductivity on steady magnetohydrodynamic(MHD) heat and mass transfer flow of viscous and incompressible fluid near a stagnation point towards a permeable stretching sheet embedded in a porous medium are presented,taking into account thermal radiation and internal heat genberation/absorbtion.The stretching velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point.The Rosseland approximation is used to describe the radiative heat flux in the energy equation.The governing fundamental equations are first transformed into a system of ordinary differential equations using a scaling group of transformations and are solved numerically by using the fourth-order Rung-Kutta method with the shooting technique.A comparison with previously published work has been carried out and the results are found to be in good agreement.The results are analyzed for the effect of different physical parameters,such as the variable viscosity and thermal conductivity,the ratio of free stream velocity to stretching velocity,the magnetic field,the porosity,the radiation and suction/injection on the flow,and the heat and mass transfer characteristics.The results indicate that the inclusion of variable viscosity and thermal conductivity into the fluids of light and medium molecular weight is able to change the boundary-layer behavior for all values of the velocity ratio parameter λ except for λ = 1.In addition,the imposition of fluid suction increases both the rate of heat and mass transfer,whereas fluid injection shows the opposite effect.
文摘The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of non-linear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases.
文摘AIM To investigate the pathophysiologic basis of syndrome of Liver Qi stagnation and parameters for clinical differentiation. METHODS Plasma L ENK, AVP, ANP and serum gastrin were determined by RIA in 84 patients with neurasthenia, mastodynia, chronic gastritis, and chronic cholecystitis presenting the same syndrome of Liver Qi stagnation in traditional Chinese medicine (TCM). Healthy subjects served as controls in comparison with patients having the same syndrome but with different diseases. RESULTS Among the patients with Liver Qi stagnation, the plasma L ENK, ANP and gastrin levels were 38 83ng/L ± 6 32ng/L , 104 11ng/L ± 29 01ng/L and 32 20ng/L ± 6 68ng/L , being significantly lower than those in the healthy controls ( t =3 34, 6 17, 4 48; P <0 01). The plasma AVP of the patient group ( 52 82ng/L ± 19 09ng/L ) was significantly higher than that of the healthy controls ( t =5 79, P <0 01). The above changes in patients having the same symptom complex but different diseases entities showed no significant differences, P >0 05. CONCLUSION The syndrome of Liver Qi stagnation is closely related to the emotional modulatory abnormality of the brain, with decrease of plasma L ENK, ANP and gastrin, and increase of plasma AVP as the important pathophysiologic basis.
文摘Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.
基金Project supported by the National Natural Science Foundation of China(Nos.11971142,11871202,61673169,11701176,11626101,and 11601485)。
文摘In this research,the three-dimensional(3D)steady and incompressible laminar Homann stagnation point nanofluid flow over a porous moving surface is addressed.The disturbance in the porous medium has been characterized by the Darcy-Forchheimer relation.The slip for viscous fluid is considered.The energy equation is organized in view of radiative heat flux which plays an important role in the heat transfer rate.The governing flow expressions are first altered into first-order ordinary ones and then solved numerically by the shooting method.Dual solutions are obtained for the velocity,skin friction coefficient,temperature,and Nusselt number subject to sundry flow parameters,magnetic parameter,Darcy-Forchheimer number,thermal radiation parameter,suction parameter,and dimensionless slip parameter.In this research,the main consideration is given to the engineering interest like skin friction coefficient(velocity gradient or surface drag force)and Nusselt number(temperature gradient or heat transfer rate)and discussed numerically through tables.In conclusion,it is noticed from the stability results that the upper branch solution(UBS)is more reliable and physically stable than the lower branch solution(LBS).
文摘The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip. Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. The governing physical problem is presented and transformed into a system of coupled nonlinear differential equations using suitable similarity transformations. These equations are then solved numerically using midpoint integration scheme along with Richardson extrapolation via Maple. Impact of relevant physical parameters on the dimensionless velocity and temperature profiles are portrayed through graphs. Physical quantities such as local skin frictions co-efficient and Nusselt numbers are tabularized.It is detected from numerical computations that kerosene-based nano fluids have better heat transfer capability compared with water-based nanofluids. Moreover it is found that water-based nanofluids offer less resistance in terms of skin friction than kerosene-based fluid. In order to authenticate our present study, the calculated results are compared with the prevailing literature and a considerable agreement is perceived for the limiting case.
文摘In this study,the stagnation point transport of second grade fluid with linear stretching under the effects of variable thermal conductivity is considered.Induced magnetic field impact is also incorporated.The nonlinear set of particle differential equations is converted into set of ordinary differential equations through appropriate transformation.The resulting equations are then resolved by optimal homotopy analysis method.The effect of pertinent parameters of interest on skin friction coefficient,temperature,induced magnetic field,velocity and local Nusselt number is inspected by generating appropriate plots.For numerical results,the built-in bvp4 c technique in computational software MATLAB is used for the convergence and residual errors of obtained series solution.It is perceived that the induced magnetic field is intensified by increasing β.It can also be observed that skin friction coefficient enhances with increasing value of magnetic parameter depending on the stretching ratio a/c.For the validness of the obtained results,a comparison has been made and an excellent agreement of current study with existing literature is found.