The steady, laminar, incompressible flow and heat transfer of a viscous fluid between two circular cylinders for two different types of thermal boundary conditions are investigated. The governing Navier-Stokes and the...The steady, laminar, incompressible flow and heat transfer of a viscous fluid between two circular cylinders for two different types of thermal boundary conditions are investigated. The governing Navier-Stokes and thermal equations of the flow are reduced to a nonlinear system of ordinary differential equations. The equations are solved analyt- ically using the homotopy analysis method (HAM). Convergence of the HAM solutions is discussed in detail. These solutions are then compared with recently obtained numericM and perturbative solutions. Plots of the velocity and temperature profiles are provided for various values of the relevant parameters.展开更多
This study derives the analytic solutions of boundary layer flows bounded by a shrinking sheet. With the similarity transformations, the partial differential equations are reduced into the ordinary differential equati...This study derives the analytic solutions of boundary layer flows bounded by a shrinking sheet. With the similarity transformations, the partial differential equations are reduced into the ordinary differential equations which are then solved by the homotopy analysis method (HAM). Two-dimensional and axisymmetric shrinking flow cases are discussed.展开更多
A 2D model is built on the package of FLUENT to study the effects of radial aspect ratio (R/W), length-to-width ratio (L/W), strain rate (SR), and buoyancy (Ri=Gr/Re^2) on the validation of the simplified 1D m...A 2D model is built on the package of FLUENT to study the effects of radial aspect ratio (R/W), length-to-width ratio (L/W), strain rate (SR), and buoyancy (Ri=Gr/Re^2) on the validation of the simplified 1D model. In the present 2D model, the methane/air homogeneous reaction mechanism of Peters and the methane/air/platinum heterogeneous reaction mechanism of Deutschmann are applied. By comparison between the 1D and 2D numerical results, it is found that the validation of 1D model is highly related with the catalytic stagnation reactor configuration. For length-to-width ratio L/W = 1 configuration, 1D laminar model is applicable when the radial aspect ratio R/W 〉 0.4. For R/W = 0.6, the reactor exhibited 1D characteristics when L/W 〈 1. Compared with the temperature and species profiles, the velocity distribution along the axis is more sensitive to the change of radial aspect ratio and length-to-width ratio. With increasing of the strain rate, the flame front goes closer to the catalytic wall surface and the difference between the 1D and 2D results decreases. For a valid 1D simulation, it is recommended that the strain rate should be convection can be neglected when Ri〈 5. greater than 20 s^-1. The effects of natural展开更多
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ...Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.展开更多
Thiswork investigates an oblique stagnation point flowof hybrid nanofluid over a rigid surface with power lawfluidas lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting i...Thiswork investigates an oblique stagnation point flowof hybrid nanofluid over a rigid surface with power lawfluidas lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting in water H2O asa base fluid. The mathematical formulation of flow configuration is presented in terms of differential systemthat isnonlinear in nature. The thermal aspects of the flow field are also investigated by assuming the surface is a heatedsurface with a constant temperature T. Numerical solutions to the governing mathematical model are calculatedby the RK45 algorithm. The results based on the numerical solution against various flow and thermal controllingparameters are presented in terms of line graphs. The specific results depict that the heat flux increases over thelubricated-indexed parameter.展开更多
The present study considers the magnetohydrodynamic(MHD)stagnation point flow with chemical reaction effect over a permeable stretching/shrinking sheet.The partial differential equations are reduced to a set of ordina...The present study considers the magnetohydrodynamic(MHD)stagnation point flow with chemical reaction effect over a permeable stretching/shrinking sheet.The partial differential equations are reduced to a set of ordinary differential equations using a similarity transformation.The transformed equations are then solved numerically by employing the bvp4c function available in the MATLAB software.The numerical results illustrate the effects of several parameters on the skin friction coefficient,local Nusselt number and the local Sherwood number.Dual solutions are obtained for a certain range of parameters.The temporal stability analysis is carried out to determine which one of these solutions is stable and thus physically reliable in a long run.展开更多
This paper investigates the problem of oblique hydro magnetic stagnation point flow of an electrically conducting Casson fluid over stretching sheet embedded in a doubly stratified medium in the presence of thermal ra...This paper investigates the problem of oblique hydro magnetic stagnation point flow of an electrically conducting Casson fluid over stretching sheet embedded in a doubly stratified medium in the presence of thermal radiation and heat source/absorption with first order chemical reaction.It is assumed that the fluid impinges on the wall obliquely.Similarity variables were used to convert the partial differential equations to ordinary differential equations.The transformed ordinary differential equations are solved numerically using Runge-Kutta-Fehlberg method with shooting technique.It is observed that a boundary layer is formed when the stretching velocity of the surface is less than the in viscid free stream velocity at a point decreases with increase in the non-Newtonian rheology parameter.The augmentation of the temperature is observed with the magnetic parameter,heat source parameter and thermal radiation parameter while a reverse effect with thermal stratification number,Prandtl number and the velocity ratio parameter.Influence of Skin friction coefficient,Nusselt number and Sherwood number on the flow configurations for different values of pertinent parameters are portrayed graphically and discussed.Numerical results are compared with the published results and are found to be in good agreement with previously published results as special cases of present problem.The mass concentration is seen to be decrease with Schmidt number,chemical reaction parameter and solutal stratification number.展开更多
The problem of two dimensional stagnation point flow of an electrically conducting micropolar fluid impinging normally on a heated surface in the presence of a uniform transverse magnetic field is analyzed. The govern...The problem of two dimensional stagnation point flow of an electrically conducting micropolar fluid impinging normally on a heated surface in the presence of a uniform transverse magnetic field is analyzed. The governing continuity, momentum, angular momentum, and heat equations together with the associated boundary conditions are reduced to dimensionless form using suitable similarity transformations. The reduced self similar non-linear equations are then solved numerically by an algorithm based on the finite difference discretization. The results are further refined by Richardson's extrapolation. The effects of the magnetic parameter, the micropolar parameters, and the Prandtl number on the flow and temperature fields are predicted in tabular and graphical forms to show the important features of the solution. The study shows that the velocity and thermal boundary layers become thinner as the magnetic parameter is increased. The micropolar fluids display more reduction in shear stress as well as heat transfer rate than that exhibited by Newtonian fluids, which is beneficial in the flow and thermal control of polymeric processing.展开更多
In this investigation,a semi-numerical method based on Bernstein polynomials for solving off-centered stagnation flow towards a rotating disc is introduced.This method expands the desired solutions in terms of a set o...In this investigation,a semi-numerical method based on Bernstein polynomials for solving off-centered stagnation flow towards a rotating disc is introduced.This method expands the desired solutions in terms of a set of Bernstein polynomials over a closed interval and then makes use of the tau method to determine the expansion coefficients to construct approximate solutions.This method can satisfy boundary conditions at infinity.The properties of Bernstein polynomials are presented and are utilized to reduce the solution of governing nonlinear equations and their associated boundary conditions to the solution of algebraic equations.Graphical results are presented to investigate the influence of the rotation ratioαon the radial velocity,azimuthal velocity and the induced velocities.A comparative study with the previous results of viscous fluid flow in the literature is made.展开更多
An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS...An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.展开更多
Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorpti...Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.展开更多
In this research,the three-dimensional(3D)steady and incompressible laminar Homann stagnation point nanofluid flow over a porous moving surface is addressed.The disturbance in the porous medium has been characterized ...In this research,the three-dimensional(3D)steady and incompressible laminar Homann stagnation point nanofluid flow over a porous moving surface is addressed.The disturbance in the porous medium has been characterized by the Darcy-Forchheimer relation.The slip for viscous fluid is considered.The energy equation is organized in view of radiative heat flux which plays an important role in the heat transfer rate.The governing flow expressions are first altered into first-order ordinary ones and then solved numerically by the shooting method.Dual solutions are obtained for the velocity,skin friction coefficient,temperature,and Nusselt number subject to sundry flow parameters,magnetic parameter,Darcy-Forchheimer number,thermal radiation parameter,suction parameter,and dimensionless slip parameter.In this research,the main consideration is given to the engineering interest like skin friction coefficient(velocity gradient or surface drag force)and Nusselt number(temperature gradient or heat transfer rate)and discussed numerically through tables.In conclusion,it is noticed from the stability results that the upper branch solution(UBS)is more reliable and physically stable than the lower branch solution(LBS).展开更多
This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy ...This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions.The wall temperature and heat flux have power dependence on both time and spatial distance.The solution domain,the velocity distribution,the flow field,and the temperature distribution in the fluids are studied for different controlling parameters.These parameters include the Prandtl number,the mass transfer parameter at the wall,the wall moving parameter,the time power index,and the spatial power index.It is found that two solution branches exist for certain combinations of the controlling parameters for the flow and heat transfer problems.The heat transfer solutions are given by the confluent hypergeometric function of the first kind,which can be simplified into the incomplete gamma functions for special conditions.The wall heat flux and temperature profiles show very complicated variation behaviors.The wall heat flux can have multiple poles under certain given controlling parameters,and the temperature can have significant oscillations with overshoot and negative values in the boundary layers.The relationship between the number of poles in the wall heat flux and the number of zero-crossing points is identified.The difference in the results of the prescribed wall temperature case and the prescribed wall heat flux case is analyzed.Results given in this paper provide a rare closed form analytical solution to the entire unsteady NS equations,which can be used as a benchmark problem for numerical code validation.展开更多
The magnetohydrodynamic (MHD) stagnation point flow of micropolar flu- ids towards a heated shrinking surface is analyzed. The effects of viscous dissipation and internal heat generation/absorption are taken into ac...The magnetohydrodynamic (MHD) stagnation point flow of micropolar flu- ids towards a heated shrinking surface is analyzed. The effects of viscous dissipation and internal heat generation/absorption are taken into account. Two explicit cases, i.e., the prescribed surface temperature (PST) and the prescribed heat flux (PHF), are discussed. The boundary layer flow and energy equations are solved by employing the homotopy analysis method. The quantities of physical interest are examined through the presenta- tion of plots/tabulated values. It is noticed that the existence of the solutions for high shrinking parameters is associated closely with the applied magnetic field.展开更多
The heat transfer of Homann flow in the stagnation region of the Al2 O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk.The effects of the nanoparticle shape,the visc...The heat transfer of Homann flow in the stagnation region of the Al2 O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk.The effects of the nanoparticle shape,the viscous dissipation,and the nonlinear radiation are considered.The governing equations are obtained by using similarity transformations,and the numerical outcomes for the flow and the temperature field are noted by bvp4 c on MATLAB.The numerical solutions of the flow field are compared with the asymptotic behaviors of large shear-to-strain-rate ratio.The effects of variations of parameters involved are inspected for both nanofluid and hybrid nanofluid flows,temperature profiles,local Nusselt numbers,and skin frictions.It is concluded that the velocity and temperature fields in the hybrid nanophase function more rapidly than those in the nanofluid phase.展开更多
Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based ...Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier.The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system.It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.展开更多
The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study. The disk impinges the oncoming flow with a time-dependent axial velocity. Th...The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study. The disk impinges the oncoming flow with a time-dependent axial velocity. The three-dimensionM axisymmetric boundary-layer flow is described by the Navier-Stokes equations. The governing equations are solved numerically, and two distinct similarity solution branches are obtained. Both solution branches exhibit different flow patterns. The upper branch solution exists for all values of the impinging parameter β and the rotating parameter Ω. However, the lower branch solution breaks down at some moderate values of β The involvement of the rotation at disk allows the similarity solution to be transpired for all the decreasing values of β. The results of the velocity profile, the skin friction, and the stream lines are demonstrated through graphs and tables for both solution branches. The results show that the impinging velocity depreciates the forward flow and accelerates the flow in the tangential direction.展开更多
This work examines the entropy generation with heat and mass transfer in magnetohydrodynamic(MHD)stagnation point flow across a stretchable surface.The heat transport process is investigated with respect to the viscou...This work examines the entropy generation with heat and mass transfer in magnetohydrodynamic(MHD)stagnation point flow across a stretchable surface.The heat transport process is investigated with respect to the viscous dissipation and thermal radiation,whereas the mass transport is observed under the influence of a chemical reaction.The irreversibe factor is measured through the application of the second law of thermodynamics.The established non-linear partial differential equations(PDEs)have been replaced by acceptable ordinary differential equations(ODEs),which are solved numerically via the bvp4 c method(built-in package in MATLAB).The numerical analysis of the resulting ODEs is carried out on the different flow parameters,and their effects on the rate of heat transport,friction drag,concentration,and the entropy generation are considered.It is determined that the concentration estimation and the Sherwood number reduce and enhance for higher values of the chemical reaction parameter and the Schmidt number,although the rate of heat transport is increased for the Eckert number and heat generation/absorption parameter,respectively.The entropy generation augments with boosting values of the Brinkman number,and decays with escalating values of both the radiation parameter and the Weissenberg number.展开更多
This study deals with the stagnation point flow of ferrofluid over a flat plate with non-linear slip boundary condition in the presence of homogeneous-heterogeneous reactions.Three kinds of ferroparticles,namely,magne...This study deals with the stagnation point flow of ferrofluid over a flat plate with non-linear slip boundary condition in the presence of homogeneous-heterogeneous reactions.Three kinds of ferroparticles,namely,magnetite(Fe_3O_4),cobalt ferrite(CoFe_2O_4) and manganese zinc ferrite(Mn-ZnFe_2O_4) are taken into account with water and kerosene as conventional base fluids.The developed model of homogeneous-heterogeneous reactions in boundary layer flow with equal and unequal diffusivities for reactant and autocatalysis is considered.The governing partial differential equations are converted into system of non-linear ordinary differential equations by mean of similarity transformations.These ordinary differential equations are integrated numerically using shooting method.The effects of pertinent parameters on velocity and concentration profiles are presented graphically and discussed.We found that in the presence of Fe_3O_4-kerosene and CoFe_2O_4-kerosene,velocity profiles increase for large values of α and β whereas there is a decrement in concentration profiles with increasing values of if and K_s.Furthermore,the comparison between non-magnetic(A1_2O_3) and magnetic Fe_3O_4 nanoparticles is given in tabular form.展开更多
This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governi...This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.展开更多
文摘The steady, laminar, incompressible flow and heat transfer of a viscous fluid between two circular cylinders for two different types of thermal boundary conditions are investigated. The governing Navier-Stokes and thermal equations of the flow are reduced to a nonlinear system of ordinary differential equations. The equations are solved analyt- ically using the homotopy analysis method (HAM). Convergence of the HAM solutions is discussed in detail. These solutions are then compared with recently obtained numericM and perturbative solutions. Plots of the velocity and temperature profiles are provided for various values of the relevant parameters.
文摘This study derives the analytic solutions of boundary layer flows bounded by a shrinking sheet. With the similarity transformations, the partial differential equations are reduced into the ordinary differential equations which are then solved by the homotopy analysis method (HAM). Two-dimensional and axisymmetric shrinking flow cases are discussed.
基金supported by the National Natural Science Foundation of China(Nos.11172296 and 50936005)
文摘A 2D model is built on the package of FLUENT to study the effects of radial aspect ratio (R/W), length-to-width ratio (L/W), strain rate (SR), and buoyancy (Ri=Gr/Re^2) on the validation of the simplified 1D model. In the present 2D model, the methane/air homogeneous reaction mechanism of Peters and the methane/air/platinum heterogeneous reaction mechanism of Deutschmann are applied. By comparison between the 1D and 2D numerical results, it is found that the validation of 1D model is highly related with the catalytic stagnation reactor configuration. For length-to-width ratio L/W = 1 configuration, 1D laminar model is applicable when the radial aspect ratio R/W 〉 0.4. For R/W = 0.6, the reactor exhibited 1D characteristics when L/W 〈 1. Compared with the temperature and species profiles, the velocity distribution along the axis is more sensitive to the change of radial aspect ratio and length-to-width ratio. With increasing of the strain rate, the flame front goes closer to the catalytic wall surface and the difference between the 1D and 2D results decreases. For a valid 1D simulation, it is recommended that the strain rate should be convection can be neglected when Ri〈 5. greater than 20 s^-1. The effects of natural
基金funded by King Mongkut’s University of Technology North Bangkok with Contract no.KMUTNB-Post-65-07。
文摘Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.
文摘Thiswork investigates an oblique stagnation point flowof hybrid nanofluid over a rigid surface with power lawfluidas lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting in water H2O asa base fluid. The mathematical formulation of flow configuration is presented in terms of differential systemthat isnonlinear in nature. The thermal aspects of the flow field are also investigated by assuming the surface is a heatedsurface with a constant temperature T. Numerical solutions to the governing mathematical model are calculatedby the RK45 algorithm. The results based on the numerical solution against various flow and thermal controllingparameters are presented in terms of line graphs. The specific results depict that the heat flux increases over thelubricated-indexed parameter.
文摘The present study considers the magnetohydrodynamic(MHD)stagnation point flow with chemical reaction effect over a permeable stretching/shrinking sheet.The partial differential equations are reduced to a set of ordinary differential equations using a similarity transformation.The transformed equations are then solved numerically by employing the bvp4c function available in the MATLAB software.The numerical results illustrate the effects of several parameters on the skin friction coefficient,local Nusselt number and the local Sherwood number.Dual solutions are obtained for a certain range of parameters.The temporal stability analysis is carried out to determine which one of these solutions is stable and thus physically reliable in a long run.
文摘This paper investigates the problem of oblique hydro magnetic stagnation point flow of an electrically conducting Casson fluid over stretching sheet embedded in a doubly stratified medium in the presence of thermal radiation and heat source/absorption with first order chemical reaction.It is assumed that the fluid impinges on the wall obliquely.Similarity variables were used to convert the partial differential equations to ordinary differential equations.The transformed ordinary differential equations are solved numerically using Runge-Kutta-Fehlberg method with shooting technique.It is observed that a boundary layer is formed when the stretching velocity of the surface is less than the in viscid free stream velocity at a point decreases with increase in the non-Newtonian rheology parameter.The augmentation of the temperature is observed with the magnetic parameter,heat source parameter and thermal radiation parameter while a reverse effect with thermal stratification number,Prandtl number and the velocity ratio parameter.Influence of Skin friction coefficient,Nusselt number and Sherwood number on the flow configurations for different values of pertinent parameters are portrayed graphically and discussed.Numerical results are compared with the published results and are found to be in good agreement with previously published results as special cases of present problem.The mass concentration is seen to be decrease with Schmidt number,chemical reaction parameter and solutal stratification number.
文摘The problem of two dimensional stagnation point flow of an electrically conducting micropolar fluid impinging normally on a heated surface in the presence of a uniform transverse magnetic field is analyzed. The governing continuity, momentum, angular momentum, and heat equations together with the associated boundary conditions are reduced to dimensionless form using suitable similarity transformations. The reduced self similar non-linear equations are then solved numerically by an algorithm based on the finite difference discretization. The results are further refined by Richardson's extrapolation. The effects of the magnetic parameter, the micropolar parameters, and the Prandtl number on the flow and temperature fields are predicted in tabular and graphical forms to show the important features of the solution. The study shows that the velocity and thermal boundary layers become thinner as the magnetic parameter is increased. The micropolar fluids display more reduction in shear stress as well as heat transfer rate than that exhibited by Newtonian fluids, which is beneficial in the flow and thermal control of polymeric processing.
文摘In this investigation,a semi-numerical method based on Bernstein polynomials for solving off-centered stagnation flow towards a rotating disc is introduced.This method expands the desired solutions in terms of a set of Bernstein polynomials over a closed interval and then makes use of the tau method to determine the expansion coefficients to construct approximate solutions.This method can satisfy boundary conditions at infinity.The properties of Bernstein polynomials are presented and are utilized to reduce the solution of governing nonlinear equations and their associated boundary conditions to the solution of algebraic equations.Graphical results are presented to investigate the influence of the rotation ratioαon the radial velocity,azimuthal velocity and the induced velocities.A comparative study with the previous results of viscous fluid flow in the literature is made.
文摘An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.
文摘Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.
基金Project supported by the National Natural Science Foundation of China(Nos.11971142,11871202,61673169,11701176,11626101,and 11601485)。
文摘In this research,the three-dimensional(3D)steady and incompressible laminar Homann stagnation point nanofluid flow over a porous moving surface is addressed.The disturbance in the porous medium has been characterized by the Darcy-Forchheimer relation.The slip for viscous fluid is considered.The energy equation is organized in view of radiative heat flux which plays an important role in the heat transfer rate.The governing flow expressions are first altered into first-order ordinary ones and then solved numerically by the shooting method.Dual solutions are obtained for the velocity,skin friction coefficient,temperature,and Nusselt number subject to sundry flow parameters,magnetic parameter,Darcy-Forchheimer number,thermal radiation parameter,suction parameter,and dimensionless slip parameter.In this research,the main consideration is given to the engineering interest like skin friction coefficient(velocity gradient or surface drag force)and Nusselt number(temperature gradient or heat transfer rate)and discussed numerically through tables.In conclusion,it is noticed from the stability results that the upper branch solution(UBS)is more reliable and physically stable than the lower branch solution(LBS).
文摘This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions.The wall temperature and heat flux have power dependence on both time and spatial distance.The solution domain,the velocity distribution,the flow field,and the temperature distribution in the fluids are studied for different controlling parameters.These parameters include the Prandtl number,the mass transfer parameter at the wall,the wall moving parameter,the time power index,and the spatial power index.It is found that two solution branches exist for certain combinations of the controlling parameters for the flow and heat transfer problems.The heat transfer solutions are given by the confluent hypergeometric function of the first kind,which can be simplified into the incomplete gamma functions for special conditions.The wall heat flux and temperature profiles show very complicated variation behaviors.The wall heat flux can have multiple poles under certain given controlling parameters,and the temperature can have significant oscillations with overshoot and negative values in the boundary layers.The relationship between the number of poles in the wall heat flux and the number of zero-crossing points is identified.The difference in the results of the prescribed wall temperature case and the prescribed wall heat flux case is analyzed.Results given in this paper provide a rare closed form analytical solution to the entire unsteady NS equations,which can be used as a benchmark problem for numerical code validation.
基金Project supported by the Higher Education Commission (HEC) of Pakistan (No. 106-1396-Ps6-004)
文摘The magnetohydrodynamic (MHD) stagnation point flow of micropolar flu- ids towards a heated shrinking surface is analyzed. The effects of viscous dissipation and internal heat generation/absorption are taken into account. Two explicit cases, i.e., the prescribed surface temperature (PST) and the prescribed heat flux (PHF), are discussed. The boundary layer flow and energy equations are solved by employing the homotopy analysis method. The quantities of physical interest are examined through the presenta- tion of plots/tabulated values. It is noticed that the existence of the solutions for high shrinking parameters is associated closely with the applied magnetic field.
文摘The heat transfer of Homann flow in the stagnation region of the Al2 O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk.The effects of the nanoparticle shape,the viscous dissipation,and the nonlinear radiation are considered.The governing equations are obtained by using similarity transformations,and the numerical outcomes for the flow and the temperature field are noted by bvp4 c on MATLAB.The numerical solutions of the flow field are compared with the asymptotic behaviors of large shear-to-strain-rate ratio.The effects of variations of parameters involved are inspected for both nanofluid and hybrid nanofluid flows,temperature profiles,local Nusselt numbers,and skin frictions.It is concluded that the velocity and temperature fields in the hybrid nanophase function more rapidly than those in the nanofluid phase.
基金supported by the National Natural Science Foundation of China (Grants 11172060 and 31370948)
文摘Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier.The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system.It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.
文摘The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study. The disk impinges the oncoming flow with a time-dependent axial velocity. The three-dimensionM axisymmetric boundary-layer flow is described by the Navier-Stokes equations. The governing equations are solved numerically, and two distinct similarity solution branches are obtained. Both solution branches exhibit different flow patterns. The upper branch solution exists for all values of the impinging parameter β and the rotating parameter Ω. However, the lower branch solution breaks down at some moderate values of β The involvement of the rotation at disk allows the similarity solution to be transpired for all the decreasing values of β. The results of the velocity profile, the skin friction, and the stream lines are demonstrated through graphs and tables for both solution branches. The results show that the impinging velocity depreciates the forward flow and accelerates the flow in the tangential direction.
文摘This work examines the entropy generation with heat and mass transfer in magnetohydrodynamic(MHD)stagnation point flow across a stretchable surface.The heat transport process is investigated with respect to the viscous dissipation and thermal radiation,whereas the mass transport is observed under the influence of a chemical reaction.The irreversibe factor is measured through the application of the second law of thermodynamics.The established non-linear partial differential equations(PDEs)have been replaced by acceptable ordinary differential equations(ODEs),which are solved numerically via the bvp4 c method(built-in package in MATLAB).The numerical analysis of the resulting ODEs is carried out on the different flow parameters,and their effects on the rate of heat transport,friction drag,concentration,and the entropy generation are considered.It is determined that the concentration estimation and the Sherwood number reduce and enhance for higher values of the chemical reaction parameter and the Schmidt number,although the rate of heat transport is increased for the Eckert number and heat generation/absorption parameter,respectively.The entropy generation augments with boosting values of the Brinkman number,and decays with escalating values of both the radiation parameter and the Weissenberg number.
文摘This study deals with the stagnation point flow of ferrofluid over a flat plate with non-linear slip boundary condition in the presence of homogeneous-heterogeneous reactions.Three kinds of ferroparticles,namely,magnetite(Fe_3O_4),cobalt ferrite(CoFe_2O_4) and manganese zinc ferrite(Mn-ZnFe_2O_4) are taken into account with water and kerosene as conventional base fluids.The developed model of homogeneous-heterogeneous reactions in boundary layer flow with equal and unequal diffusivities for reactant and autocatalysis is considered.The governing partial differential equations are converted into system of non-linear ordinary differential equations by mean of similarity transformations.These ordinary differential equations are integrated numerically using shooting method.The effects of pertinent parameters on velocity and concentration profiles are presented graphically and discussed.We found that in the presence of Fe_3O_4-kerosene and CoFe_2O_4-kerosene,velocity profiles increase for large values of α and β whereas there is a decrement in concentration profiles with increasing values of if and K_s.Furthermore,the comparison between non-magnetic(A1_2O_3) and magnetic Fe_3O_4 nanoparticles is given in tabular form.
基金the Fundamental Research Grant Scheme(FRGS)under a grant number of FRGS/1/2018/STG06/UNIMAP/02/3 from the Ministry of Education Malaysia。
文摘This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.