Pulsed current Micro Plasma Arc Welding is used to joint thin sheets of AISI 304L sheets, which are used in manufacturing of metallic bellows and diaphragms. In this article the effects of pulsing current parameters o...Pulsed current Micro Plasma Arc Welding is used to joint thin sheets of AISI 304L sheets, which are used in manufacturing of metallic bellows and diaphragms. In this article the effects of pulsing current parameters on weld pool geometry namely front width, back width, front height and back height of pulsed current micro plasma arc welded AISI 304L stainless steel sheets was analyzed. Four factors, five levels, central composite design was used to develop mathematical models, incorporating pulsed current parameters and weld pool geometry. The mathematical models have been developed by Response Surface Method. The adequacy of the models was checked by ANOVA technique. Variation of output responses with input process variables are discussed. By using the developed mathematical models, weld pool geometry parameters can be predicted.展开更多
The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile exper...The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.展开更多
文摘Pulsed current Micro Plasma Arc Welding is used to joint thin sheets of AISI 304L sheets, which are used in manufacturing of metallic bellows and diaphragms. In this article the effects of pulsing current parameters on weld pool geometry namely front width, back width, front height and back height of pulsed current micro plasma arc welded AISI 304L stainless steel sheets was analyzed. Four factors, five levels, central composite design was used to develop mathematical models, incorporating pulsed current parameters and weld pool geometry. The mathematical models have been developed by Response Surface Method. The adequacy of the models was checked by ANOVA technique. Variation of output responses with input process variables are discussed. By using the developed mathematical models, weld pool geometry parameters can be predicted.
基金financially supported by the Shanghai Materials Genome Institute No. 5 (No. 16DZ2260605)the Shanghai Sailing Program (No. 17YF1405400)the Project to Strengthen Industrial Development at the Grass-roots Level (No. TC160A310/19)
文摘The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.