An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish ...An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish the nugget from the corona bond. The 2D C-scan images produced by ultrasonic C scan which contribute to quantitatively calculate the nugget diameter for the computer are further analyzed. The spot welding nugget diameter can be automatically obtained by image enhancement, edge detection and equivalent diameter algorithm procedure. The ultrasonic detection values in this paper show good agreement with the metallographic measured values. The mean value of normal distribution curve is 0.006 67, and the standard deviation is 0.087 11. Ultrasonic C-scan test based on wavelet packet signal analysis is of high accuracy and stability.展开更多
With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable ...With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone.展开更多
In this paper, ultrasonic C-scan test of spot welds for stainless steel has been studied. It is concluded that large scanning step length contributes to high testing efficiency, however, the low-resolution C-scan imag...In this paper, ultrasonic C-scan test of spot welds for stainless steel has been studied. It is concluded that large scanning step length contributes to high testing efficiency, however, the low-resolution C-scan image generated cannot be used to assess spot welding quality reliably. Based on bicubic image interpolation, the C-scan image in low resolution with the large step length 1 000 ~xm is subdivided and reconstructed. By this means, the C-scan image resolution is greatly enhanced and testing results obtained are satisfactory, realizing rapid assessment of spot welds. The results of rapid ultrasonic C-scan test fit the actual metallographic measured value well. Mean value of normal distribution of error statistics is O. 006 67, and the standard deviation is O. 087 11. Rapid ultrasonic C-scan test based on image interpolation is of high accuracy and excellent stability.展开更多
Commercially pure titanium and stainless steel sheets were welded using the technique of resistance spot welding with an aluminum alloy insert. The interfacial microstructure of the joint was observed and analyzed usi...Commercially pure titanium and stainless steel sheets were welded using the technique of resistance spot welding with an aluminum alloy insert. The interfacial microstructure of the joint was observed and analyzed using electron microscopy; the tensile shear strength was investigated. An approximate 160 nm thick layer of Al solid solution supersaturated with Ti was observed at the interface between titanium and aluminum alloy. The solid solution layer contained the precipitates TiAla. And an approximate 1. 5 μm thick serrate reaction layer was observed at the interface between stainless steel and aluminum alloy. The maximum tensile shear load of 5.38 kN was obtained from the joint welded at the welding current of 10 kA. The results reveal that the property of the joint between titanium and stainless steel can be improved by using an aluminum alloy insert.展开更多
Transformation induced plasticity (TRIP) and twinning induced plasticity (TWlP) effects had been widely studied in single austenite steel. But in duplex γ & α(δ) phase, such as welding materials of stainles...Transformation induced plasticity (TRIP) and twinning induced plasticity (TWlP) effects had been widely studied in single austenite steel. But in duplex γ & α(δ) phase, such as welding materials of stainless steel, they had been less studied. Tensile shear loading experiment of resistance spot welding specimens prepared with 2 mm 301L sheets, was carried out at 15℃ and -50℃. Optical microscopy and scanning electron microscopy (SEM) as well as X-ray diffraction (XRD) were used to investigate the microstructure of weld nugget, and specimens fracture surface. The results showed that the initial weld nugget was composed of 8.4% α(δ) ferrite and 91.6% austenite. Tensile shear load bearing capacity of spot welding specimen at -50℃ was 24.8 kN, 17.7% higher than that at 15℃. About 78.5 vol. pct. martensite transformation was induced by plastic deformation at -50℃, while about 67.9 vol. pct transformation induced at 15℃. The plasticity of spot welding joint decreased with the decline of experimental temperature.展开更多
A three dimensional finite difference electrical thermal model for resistance spot welding nugget process of mild steel and stainless steel is introduced. A simulation method of the interaction of electrical and the...A three dimensional finite difference electrical thermal model for resistance spot welding nugget process of mild steel and stainless steel is introduced. A simulation method of the interaction of electrical and thermal factors is presented. Meanwhile, calculation method of contact resistance and treatment method of heater structure is provided. The influence of the temperature dependent material properties and various cooling boundary conditions on welding process was also taken into account in the model. A method for improving the mild steel and stainless steel joint was analyzed in numerical simulation process. Experimental verification shows that the model prediction agrees well with the practice. The model provides a useful theoretic tool for the analysis of the process of resistance spot welding of mild steel and stainless steel.展开更多
Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld...Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.展开更多
Due to the differences in physical, chemical and mechanical properties of the base metals, the resistance spot welding of dissimilar materials is generally more challenging than that of similar materials. The influenc...Due to the differences in physical, chemical and mechanical properties of the base metals, the resistance spot welding of dissimilar materials is generally more challenging than that of similar materials. The influence of the primary welding parameters affecting the heat input such as peak current on the morphology, microhardness, and tensile shear load bearing capacity of dissimilar welds between 304 grades austenitic and 7114 grade interstitial free steel has been investigated in this study. The optimum welding parameters producing maximum joint strength were established at a peak current of 9 kA, where the electrode force is kept 6×10^-5 Pa and weld time is kept constant 17 cycles, respectively. The primary cause of weakening the weldment is identified as the excessive grain growing region of heat affected zone (HAZ) in case of 7114 grade interstitial free steel.展开更多
The spot welds nugget cracking of austenitic stainless steel at temperatures between 700°C - 1010°C was investigated. Traditionally, the cracks have been observed around the spot nugget in welded temperature...The spot welds nugget cracking of austenitic stainless steel at temperatures between 700°C - 1010°C was investigated. Traditionally, the cracks have been observed around the spot nugget in welded temperature. Actually, these cracks are developed due to incomplete melting and inappropriate electrode pressure, which causes an expulsion of molten metal. These cracks start to grow and cause either the interface or plug fracture according to the loading type. In this work, the micro-cracks in the weld nugget were indicated for this type of steel at elevated temperature. Cracks appear in a certain range of temperature;about 700°C - 750°C. The cracks like defect and cavitations were presented. According to the fracture mechanics point of view, these cracks reduce the mechanical strength. Therefore, these cracks have to be taken into account with a certain precaution. Moreover, considering the working temperature and reducing the element may develop ferrite particles.展开更多
Dissimilar welding of NiTi and stainless steel(SS)for multifunctional device fabrication is challenging due to the brittle nature of intermetallic compounds(IMCs)that are formed in the weld zone.In this work,Ni and Nb...Dissimilar welding of NiTi and stainless steel(SS)for multifunctional device fabrication is challenging due to the brittle nature of intermetallic compounds(IMCs)that are formed in the weld zone.In this work,Ni and Nb interlayers were applied for the resistance spot welding(RSW)of NiTi and SS to replace the harmful Fe_(2)Ti phase and to restrict the mixing of dissimilar molten metals,respectively.Microstructural evolution and mechanical properties of the joints were investigated.It was shown that a conventional weld nugget was created in the absence of any interlayer in the welded joint suffering from traversed cracks due to the formation of brittle IMCs network in the fusion zone(FZ).By the addition of Ni from the interlayer,Fe_(2)Ti dominated weld nugget was efficaciously replaced by Ni_(3)Ti phase;however,the presence of the large pore and cracks reduced the effective joining area.The use of a Nb interlayer resulted in a fundamentally different joint,in which FZs at NiTi and SS sides separated by the unmolten Nb would suppress the mixing of dissimilar molten metals.Nb-containing eutectic structures with low brittleness formed at the interfaces,contributing to the enhancement of joint strength(increased by 38%on fracture load and 460%on energy absorption).A high-melting-point interlayer showed great potential to realize a reliable and high-performing RSWed NiTi-SS joint.展开更多
Microstructure characteristics of dissimilar-metal resistance spot welded joints of SUS301 L austenitic stainless steel and 6063-T6 aluminum alloy, and effects of electrode morphology were studied. Results indicated t...Microstructure characteristics of dissimilar-metal resistance spot welded joints of SUS301 L austenitic stainless steel and 6063-T6 aluminum alloy, and effects of electrode morphology were studied. Results indicated that welded joints of dissimilar materials between austenitic stainless steel and aluminum alloy had characteristics of welding-brazing. The aluminum nugget consisted mainly of the cellular crystal, cellular dendrites and dendrites. The interface between austenitic stainless steel and aluminum alloy had a two-layered structures:a flat front surface θ-Fe_2Al_5 on the steel side and a serrated morphology θ-FeAl_3 on the aluminium alloy side, and it was the weakest zone of the joints. The electrode morphology had great effects on spot welded joints of stainless steel and aluminum alloy. The custom electrodes were a planar circular tip electrode with tip diameter of 10 mm on the stainless steel side and a spherical tip electrode with spherical radius of 35 mm on the aluminum alloy side. When the custom electrodes were used, the nugget diameter, tensile shear load and indentation ratio of spot welded joint were 7.22 mm, 3 606 N and 10.71%, respectively. The nugget diameter and joint tensile shear load increased by 34% and 102% respectively, and the indentation ratio decreased by 65% compared with the F-type electrodes(nugget diameter: 5.384 mm, tensile-shear load 1 783 N, indentation rate 30.94%). Therefore, it was more favorable to use the custom electrodes for improving the mechanical properties and appearance quality of resistance spot welded joints of stainless steel and aluminum alloy.展开更多
基金Funded by Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science & Engineering,Jilin University
文摘An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish the nugget from the corona bond. The 2D C-scan images produced by ultrasonic C scan which contribute to quantitatively calculate the nugget diameter for the computer are further analyzed. The spot welding nugget diameter can be automatically obtained by image enhancement, edge detection and equivalent diameter algorithm procedure. The ultrasonic detection values in this paper show good agreement with the metallographic measured values. The mean value of normal distribution curve is 0.006 67, and the standard deviation is 0.087 11. Ultrasonic C-scan test based on wavelet packet signal analysis is of high accuracy and stability.
基金Supported by National Natural Science Foundation of China (Grant No.52075378)Prince Sattam Bin Abdulaziz University of Saudi Arabia (Grant No.PSAU/2024/R/1445)。
文摘With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone.
文摘In this paper, ultrasonic C-scan test of spot welds for stainless steel has been studied. It is concluded that large scanning step length contributes to high testing efficiency, however, the low-resolution C-scan image generated cannot be used to assess spot welding quality reliably. Based on bicubic image interpolation, the C-scan image in low resolution with the large step length 1 000 ~xm is subdivided and reconstructed. By this means, the C-scan image resolution is greatly enhanced and testing results obtained are satisfactory, realizing rapid assessment of spot welds. The results of rapid ultrasonic C-scan test fit the actual metallographic measured value well. Mean value of normal distribution of error statistics is O. 006 67, and the standard deviation is O. 087 11. Rapid ultrasonic C-scan test based on image interpolation is of high accuracy and excellent stability.
文摘Commercially pure titanium and stainless steel sheets were welded using the technique of resistance spot welding with an aluminum alloy insert. The interfacial microstructure of the joint was observed and analyzed using electron microscopy; the tensile shear strength was investigated. An approximate 160 nm thick layer of Al solid solution supersaturated with Ti was observed at the interface between titanium and aluminum alloy. The solid solution layer contained the precipitates TiAla. And an approximate 1. 5 μm thick serrate reaction layer was observed at the interface between stainless steel and aluminum alloy. The maximum tensile shear load of 5.38 kN was obtained from the joint welded at the welding current of 10 kA. The results reveal that the property of the joint between titanium and stainless steel can be improved by using an aluminum alloy insert.
文摘Transformation induced plasticity (TRIP) and twinning induced plasticity (TWlP) effects had been widely studied in single austenite steel. But in duplex γ & α(δ) phase, such as welding materials of stainless steel, they had been less studied. Tensile shear loading experiment of resistance spot welding specimens prepared with 2 mm 301L sheets, was carried out at 15℃ and -50℃. Optical microscopy and scanning electron microscopy (SEM) as well as X-ray diffraction (XRD) were used to investigate the microstructure of weld nugget, and specimens fracture surface. The results showed that the initial weld nugget was composed of 8.4% α(δ) ferrite and 91.6% austenite. Tensile shear load bearing capacity of spot welding specimen at -50℃ was 24.8 kN, 17.7% higher than that at 15℃. About 78.5 vol. pct. martensite transformation was induced by plastic deformation at -50℃, while about 67.9 vol. pct transformation induced at 15℃. The plasticity of spot welding joint decreased with the decline of experimental temperature.
文摘A three dimensional finite difference electrical thermal model for resistance spot welding nugget process of mild steel and stainless steel is introduced. A simulation method of the interaction of electrical and thermal factors is presented. Meanwhile, calculation method of contact resistance and treatment method of heater structure is provided. The influence of the temperature dependent material properties and various cooling boundary conditions on welding process was also taken into account in the model. A method for improving the mild steel and stainless steel joint was analyzed in numerical simulation process. Experimental verification shows that the model prediction agrees well with the practice. The model provides a useful theoretic tool for the analysis of the process of resistance spot welding of mild steel and stainless steel.
基金Project(50974046/E041607) supported by the National Natural Science Foundation of China
文摘Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.
文摘Due to the differences in physical, chemical and mechanical properties of the base metals, the resistance spot welding of dissimilar materials is generally more challenging than that of similar materials. The influence of the primary welding parameters affecting the heat input such as peak current on the morphology, microhardness, and tensile shear load bearing capacity of dissimilar welds between 304 grades austenitic and 7114 grade interstitial free steel has been investigated in this study. The optimum welding parameters producing maximum joint strength were established at a peak current of 9 kA, where the electrode force is kept 6×10^-5 Pa and weld time is kept constant 17 cycles, respectively. The primary cause of weakening the weldment is identified as the excessive grain growing region of heat affected zone (HAZ) in case of 7114 grade interstitial free steel.
文摘The spot welds nugget cracking of austenitic stainless steel at temperatures between 700°C - 1010°C was investigated. Traditionally, the cracks have been observed around the spot nugget in welded temperature. Actually, these cracks are developed due to incomplete melting and inappropriate electrode pressure, which causes an expulsion of molten metal. These cracks start to grow and cause either the interface or plug fracture according to the loading type. In this work, the micro-cracks in the weld nugget were indicated for this type of steel at elevated temperature. Cracks appear in a certain range of temperature;about 700°C - 750°C. The cracks like defect and cavitations were presented. According to the fracture mechanics point of view, these cracks reduce the mechanical strength. Therefore, these cracks have to be taken into account with a certain precaution. Moreover, considering the working temperature and reducing the element may develop ferrite particles.
基金Natural Sciences and Engineering Research Council of Canada(NSERC)Canada Research Chairs(CRC)+1 种基金K.Z.acknowledges support from China Scholarship Council(CSC)J.P.O.acknowledges funding by national funds from FCT-Fundação para a Ciência e a Tecnologia,I.P.,in the scope of the projects LA/P/0037/2020,UIDP/50025/2020 and UIDB/50025/2020 of the Associate Laboratory Institute of Nanostructures,Nanomodelling and Nanofabrication–i3N.
文摘Dissimilar welding of NiTi and stainless steel(SS)for multifunctional device fabrication is challenging due to the brittle nature of intermetallic compounds(IMCs)that are formed in the weld zone.In this work,Ni and Nb interlayers were applied for the resistance spot welding(RSW)of NiTi and SS to replace the harmful Fe_(2)Ti phase and to restrict the mixing of dissimilar molten metals,respectively.Microstructural evolution and mechanical properties of the joints were investigated.It was shown that a conventional weld nugget was created in the absence of any interlayer in the welded joint suffering from traversed cracks due to the formation of brittle IMCs network in the fusion zone(FZ).By the addition of Ni from the interlayer,Fe_(2)Ti dominated weld nugget was efficaciously replaced by Ni_(3)Ti phase;however,the presence of the large pore and cracks reduced the effective joining area.The use of a Nb interlayer resulted in a fundamentally different joint,in which FZs at NiTi and SS sides separated by the unmolten Nb would suppress the mixing of dissimilar molten metals.Nb-containing eutectic structures with low brittleness formed at the interfaces,contributing to the enhancement of joint strength(increased by 38%on fracture load and 460%on energy absorption).A high-melting-point interlayer showed great potential to realize a reliable and high-performing RSWed NiTi-SS joint.
基金supported by the National Natural Science Foundation of China(Grant No.51275204)
文摘Microstructure characteristics of dissimilar-metal resistance spot welded joints of SUS301 L austenitic stainless steel and 6063-T6 aluminum alloy, and effects of electrode morphology were studied. Results indicated that welded joints of dissimilar materials between austenitic stainless steel and aluminum alloy had characteristics of welding-brazing. The aluminum nugget consisted mainly of the cellular crystal, cellular dendrites and dendrites. The interface between austenitic stainless steel and aluminum alloy had a two-layered structures:a flat front surface θ-Fe_2Al_5 on the steel side and a serrated morphology θ-FeAl_3 on the aluminium alloy side, and it was the weakest zone of the joints. The electrode morphology had great effects on spot welded joints of stainless steel and aluminum alloy. The custom electrodes were a planar circular tip electrode with tip diameter of 10 mm on the stainless steel side and a spherical tip electrode with spherical radius of 35 mm on the aluminum alloy side. When the custom electrodes were used, the nugget diameter, tensile shear load and indentation ratio of spot welded joint were 7.22 mm, 3 606 N and 10.71%, respectively. The nugget diameter and joint tensile shear load increased by 34% and 102% respectively, and the indentation ratio decreased by 65% compared with the F-type electrodes(nugget diameter: 5.384 mm, tensile-shear load 1 783 N, indentation rate 30.94%). Therefore, it was more favorable to use the custom electrodes for improving the mechanical properties and appearance quality of resistance spot welded joints of stainless steel and aluminum alloy.