期刊文献+
共找到1,306篇文章
< 1 2 66 >
每页显示 20 50 100
Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag 被引量:2
1
作者 Zihang Yan Qing Zhao +3 位作者 Chengzhi Han Xiaohui Mei Chengjun Liu Maofa Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期292-300,共9页
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen... Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%. 展开更多
关键词 stainless steel slag SPINEL CHROMIUM waste remediation ferrous oxide
下载PDF
Corrosion behavior of ferritic stainless steel with 15wt% chromium for the automobile exhaust system 被引量:4
2
作者 Hua-bing Li Zhou-hua Jiang +3 位作者 Hao Feng Hong-chun Zhu Bin-han Sun Zhen Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第9期850-860,共11页
The effect of chloride ion concentration, pH value, and grain size on the pitting corrosion resistance of a new ferritic stainless steel with 15wt% Cr was investigated using the anodic polarization method. The semicon... The effect of chloride ion concentration, pH value, and grain size on the pitting corrosion resistance of a new ferritic stainless steel with 15wt% Cr was investigated using the anodic polarization method. The semiconducting properties of passive films with different chloride ion concentrations were performed using capacitance measurement and Mott-Schottky analysis methods. The aging precipitation and intergranular corrosion behavior were evaluated at 400- 900℃. It is found that the pitting potential decreases when the grain size increases. With the increase in chloride ion concentration, the doping density and the flat-bland potential increase but the thickness of the space charge layer decreases. The pitting corrosion resistance increases rapidly with the decrease in pH value. Precipitants is identified as Nb(C,N) and NbC, rather than Cr-carbide. The intergranular corrosion is attributed to the synergistic effects of Nb(C,N) and NbC precipitates and Cr segregation adjacent to the precipitates. 展开更多
关键词 ferritic stainless steel corrosion resistance PITTING chlorides intergranular corrosion grain size
下载PDF
Lap-Shear Performance of Weld-Bonded Mg Alloy and Austenitic Stainless Steel in Three-Sheet Stack-Up
3
作者 Sunusi Marwana Manladan Mukhtar Fatihu Hamza +1 位作者 Singh Ramesh Zhen Luo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期342-353,共12页
With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable ... With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone. 展开更多
关键词 Weld-bonding Resistance spot welding Austenitic stainless steel Mg alloy Failure mode
下载PDF
Understanding of tribocorrosion and corrosion characteristics of304L stainless steel in hot concentrated nitric acid solution
4
作者 LIU Zheng ZHANG Lian-min +3 位作者 LIU Chen-chen TAN Ke-di MA Ai-li ZHENG Yu-gui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3657-3673,共17页
Spent fuel reprocessing plays a pivotal role in achieving efficient recycling of nuclear fuel.Among thedifferent forms of failure encountered in spent fuel reprocessing,tribocorrosion stands out as a critical concern.... Spent fuel reprocessing plays a pivotal role in achieving efficient recycling of nuclear fuel.Among thedifferent forms of failure encountered in spent fuel reprocessing,tribocorrosion stands out as a critical concern.Herein,the tribocorrosion behavior,as well as the corrosion behavior,of 304L stainless steel(SS)in high-temperatureconcentrated nitric acid was investigated.The results indicated that 304L SS formed a thin(1.54 nm)and stable passivefilm on the surface,imparting high resistance to nitric acid corrosion.Meanwhile,it was found that the synergistic effectbetween corrosion and wear accounted for a high total tribocorrosion weight loss of over 85%,implying the dominantrole of the synergistic effect in the tribocorrosion process.Furthermore,the wear of 304L SS in deionized water revealedboth abrasive and adhesive wear characterizations,whereas the tribocorrosion in nitric acid only exhibited abrasive wearfeature.Eventually,the tribocorrosion and corrosion models of 304L SS in hot concentrated nitric acid were proposedbased on the comprehensive experimental findings. 展开更多
关键词 304L stainless steel TRIBOCORROSION CORROSION hot nitric acid mechanism model
下载PDF
Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels
5
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +3 位作者 Saeed Sadeghpour Milad Zolfipour Aghdam Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2182-2188,共7页
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare... The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range. 展开更多
关键词 austenitic stainless steels mechanical behavior stacking fault energy METASTABILITY mechanical twinning
下载PDF
Bulging Distortion of Austenitic Stainless Steel Sheet on the Partially Penetrated Side of Non-Penetration Lap Laser Welding Joint
6
作者 Chengwu Yao Enze Liu +1 位作者 Jiaming Ni Binying Nie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期286-295,共10页
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust... Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding. 展开更多
关键词 Non-penetration lap laser welding Bulging distortion Austenitic stainless steel Compressive stress Tension stress
下载PDF
Temperature-jump tensile tests to induce optimized TRIP/TWIP effect in a metastable austenitic stainless steel
7
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +2 位作者 Saeed Sadeghpour Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2025-2036,共12页
In the present work,plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200℃ in AISI 304L austenitic stainless steel,aiming to optimize the strength-du... In the present work,plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200℃ in AISI 304L austenitic stainless steel,aiming to optimize the strength-ductility synergy.It was shown that the combined twinning-induced plasticity(TWIP)/transformation-induced plasticity(TRIP)effects and a wider strain range for the TRIP effect up to higher strains by adjusting the deformation temperature are good strategies to improve the strength-ductility synergy of this metastable stainless steel.In this regard,by consideration of the observed temperature-dependency of plastic deformation,the controlled sequence of TWIP and TRIP effects for archiving superior strength-ductility trade-off was intended by the pre-designed temperature jump tensile tests.Accordingly,the optimum tensile toughness of 846 MJ/m^(3) and total elongation to 133% were obtained by this strategy via exploiting the advantages of the TWIP effect at 100℃ and the TRIP effect at 25℃ at the later stages of the straining.Consequently,a deformation-temperature-transformation(DTT)diagram was developed for this metastable alloy.Moreover,based on work-hardening analysis,it was found that the main phenomenon constraining further improvement in the ductility and strengthening was the yielding of the deformation-induced α′-martensite. 展开更多
关键词 metastable stainless steels transformation-induced plasticity twinning-induced plasticity stacking fault energy mechanical properties
下载PDF
Microstructure and mechanical properties of a cast TRIP-assisted multiphase stainless steel
8
作者 Meng-xin Wang Zi-xiang Wu +1 位作者 Jing-yu He Xiang Chen 《China Foundry》 SCIE EI CAS CSCD 2024年第3期221-228,共8页
Stainless steels are used in a wide range of complex environments due to their excellent corrosion resistance.Multiphase stainless steels can offer an excellent combination of strength,toughness and corrosion resistan... Stainless steels are used in a wide range of complex environments due to their excellent corrosion resistance.Multiphase stainless steels can offer an excellent combination of strength,toughness and corrosion resistance due to the coexistence of different microstructures.The microstructure and mechanical properties of a novel cast multiphase stainless steel,composed of martensite,ferrite,and austenite,were investigated following appropriate heat treatment processes:solution treatment at 1,050℃ for 0.5 h followed by water quenching to room temperature,and aging treatment at 500℃ for 4 h followed by water quenching to room temperature.Results show reversed austenite is formed by diffusion of Ni element during aging process,and the enrichment of Ni atoms directly determines the mechanical stability of austenite.The austenite with a lower Ni content undergoes a martensitic transformation during plastic deformation.The tensile strength of the specimen exceeds 1,100 MPa and the elongation exceeds 24%after solid solution,and further increases to 1,247 MPa and 25%after aging treatment.This enhancement is due to the TRIP effect of austenite and the precipitation of the nanoscale G-phase pinning dislocations in ferrite and martensite. 展开更多
关键词 multiphase stainless steel mechanical properties TRIP effect reversed austenite G-phase
下载PDF
Electromagnetic responses on microstructures of duplex stainless steels based on 3D cellular and electromagnetic sensor finite element models
9
作者 Shuaishuai Xiao Jialong Shen +3 位作者 Jianing Zhao Jie Fang Caiyu Liang Lei Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2681-2691,共11页
Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization m... Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization methods are time consuming and results are not rep-resentative for overall quality level as only a fraction of steel sample was selected to be examined.In this paper,a macro and micro coupled 3D model was developed for nondestructively characterization of steel microstructures.For electromagnetic signals analysis,the relative permeability value computed by the micro cellular model can be used in the macro electromagnetic sensor model.The effects of different microstructure components on the relative permeability of duplex stainless steel(grain size,phase fraction,and phase distribu-tion)were discussed.The output inductance of an electromagnetic sensor was determined by relative permeability values and can be val-idated experimentally.The findings indicate that the inductance value of an electromagnetic sensor at low frequency can distinguish dif-ferent microstructures.This method can be applied to real-time on-line characterize steel microstructures in process of steel rolling. 展开更多
关键词 MICROSTRUCTURE electromagnetic sensor finite element duplex stainless steel
下载PDF
Unveiling the cellular microstructure-property relations in martensitic stainless steel via laser powder bed fusion
10
作者 Lingzhi Wu Cong Zhang +7 位作者 Dil Faraz Khan Ruijie Zhang Yongwei Wang Xue Jiang Haiqing Yin Xuanhui Qu Geng Liu Jie Su 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2476-2487,共12页
Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect... Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established. 展开更多
关键词 laser powder bed fusion martensitic stainless steel cellular microstructure mechanical properties strengthening mechanism
下载PDF
Laser-assisted water jet machining of high quality micro-trap structures on stainless steel surfaces
11
作者 LIU Li YAO Peng +3 位作者 CHU Dong-kai XU Xiang-yue QU Shuo-shuo HUANG Chuan-zhen 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第6期1476-1488,共13页
Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte... Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces. 展开更多
关键词 laser-assisted water jet 316L stainless steel micro-trap structures "well"structure surface morphology secondary electron emission(SEE) groove depth groove width
下载PDF
Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
12
作者 WANG Fan WANG Xitao +1 位作者 XU Shiguang HE Jinshan 《材料导报》 EI CAS CSCD 北大核心 2024年第17期165-171,共7页
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati... The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation. 展开更多
关键词 7Mo super austenitic stainless steel hot deformation behavior flow stress BP-ANN Arrhenius constitutive equation
下载PDF
Robust Particle Swarm Optimization Algorithm for Modeling the Effectof Oxides Thermal Properties on AMIG 304L Stainless Steel Welds
13
作者 Rachid Djoudjou Abdeljlil Chihaoui Hedhibi +3 位作者 Kamel Touileb Abousoufiane Ouis Sahbi Boubaker Hani Said Abdo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1809-1825,共17页
There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipmen... There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties. 展开更多
关键词 Activated metal inert gas welding stainless steel activating flux oxides’thermal properties particle swarm optimization
下载PDF
Application and failure evaluation of ferritic stainless steels for automotive exhaust systems 被引量:4
14
作者 BI Hongyun WU Yong LI Xin 《Baosteel Technical Research》 CAS 2010年第1期10-14,共5页
In recent years, with attention paid to global environmental problems, there have been requirements for continuous improvement of automobile fuel economy and exhaust gas purification rate. The properties of the ferrit... In recent years, with attention paid to global environmental problems, there have been requirements for continuous improvement of automobile fuel economy and exhaust gas purification rate. The properties of the ferritic stainless steels (FSS) used to make automobile parts have been improved. This paper introduces the construction of automotive exhaust systems and describes their main failure behaviors and corrosion evaluation procedures. 展开更多
关键词 automotive exhaust system ferritic stainless steels corrosion failure
下载PDF
Progress in weldability research of duplex stainless steels
15
作者 刘爱国 《China Welding》 CAS 2024年第2期50-62,共13页
Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding proce... Duplex stainless steels(DSSs)show better corrosion resistance with higher strength than traditional austenite stainless steels in many aggressive environments,and can be welded properly with almost every welding processes,if proper heat input is provided.Progresses of research works on weldability of DSSs in recent years are reviewed in this paper.Balance control of ferrite/austenite phases is most important for DSSs welding.The phases balance can be controlled with filler materials,nitrogen addition in shielding gas,heat input,post weld heat treatment,and alternating magnetic field.Too high cooling rate results in not only extra ferrite,but also chromium nitride precipitation.While too low cooling rate or heating repeatedly results in precipitation of secondary austenite and intermetallic compounds.In both situations,mechanical properties and corrosion resistance of the DSS joints deteriorate.Recommended upper and lower limits of heat input and maximum interpass temperature should be observed. 展开更多
关键词 duplex stainless steel WELDABILITY phases balance secondary phase
下载PDF
Effect of Ni content on the weldability of middle-chromium hyperpure ferritic stainless steels 00Cr21Ti
16
作者 ZHANG Xinbao WANG Zhibin +2 位作者 SUN Mingshan YAN Zhifeng WANG Wenxian 《Baosteel Technical Research》 CAS 2024年第2期19-26,共8页
Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic st... Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability. 展开更多
关键词 00Cr21Ti ferritic stainless steel SUS443 welded joint mechanical properties fatigue property Ni content
下载PDF
Study on the corrosion properties of 0Cr11 ferritic stainless steel for automotive exhaust systems 被引量:2
17
作者 LI Xin WU Yong BI Hongyun 《Baosteel Technical Research》 CAS 2010年第1期53-55,共3页
This study investigates the corrosion properties of 0Cr11Ti and 0Cr11NbTi ferritic stainless steels (FSS) for automotive exhaust systems. The results indicate that the base metal and weld seam of 0Cr11NbTi steel exh... This study investigates the corrosion properties of 0Cr11Ti and 0Cr11NbTi ferritic stainless steels (FSS) for automotive exhaust systems. The results indicate that the base metal and weld seam of 0Cr11NbTi steel exhibit better intergranular and condensate corrosion resistant properties because carbon and nitrogen are stabilized by Nb and Ti, and the precipitation of Cr carbide is retarded in grain boundaries. 展开更多
关键词 ferritic stainless steel intergranular corrosion condensate corrosion
下载PDF
Experimental Study on Corrosion of Stainless Steel in Low Temperature Multi effect Seawater Desalination
18
作者 Shiyi Zhang Xinggang Ma 《Frontiers of Metallurgical Industry》 2024年第2期25-31,共7页
Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the... Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards. 展开更多
关键词 seawater desalination corrosion mechanism of stainless steel composite board lamination corrosion rate
下载PDF
A Fe-Ni-Cr system filler metal for brazing of stainless steel
19
作者 赵海生 熊华平 +1 位作者 潘晖 淮军锋 《China Welding》 EI CAS 2015年第1期1-5,共5页
New Fe-Ni-Cr system brazing alloys were designed, in which elements Si and B as well as Cu-Ti binary alloy were added as the temperature depressants. The brazing alloys were fabricated into filler foils by a rapidly-s... New Fe-Ni-Cr system brazing alloys were designed, in which elements Si and B as well as Cu-Ti binary alloy were added as the temperature depressants. The brazing alloys were fabricated into filler foils by a rapidly-solidifying technique. It was found that, to acquire a suitable liquidus temperature of the filler alloy, the addition of Cu-Ti binary alloy decreased the needed amount of Si and B, and it had an effect on improvement in mechanical properties of the brazed joints. Based on the results of melting and wettability experiments, one filler metal was used to join stainless steel at 1 140 ℃ for 15 min. The rnicrostructure of the joint was analyzed by means of a scanning electron microscope (SEM) equipped with X-ray energy- dispersive spectroscopy (EDS). It was found that the typical joint was mainly composed of solid solution with a small quantity of Cr-rich borides strips, Ti-rich boride blocks and Cu-rich silicide particles. The brazed joints show an average tensile strength of 270. 8 MPa and an average impact toughness of 35.6 J/cm^2. 展开更多
关键词 BRAZING stainless steel Fe-Ni-Cr filler metal MICROSTRUCTURE mechanical properties
下载PDF
Development of high corrosion-resistant ferritic stainless steel and its application in the building cladding system
20
作者 HE Ruying JIANG Laizhu DONG Wenbo 《Baosteel Technical Research》 CAS 2013年第1期54-58,共5页
Effects of Mo, Nb, Ti on mechanical properties and corrosion resistance of 22.5% Cr ferritic stainless steel were investigated. The results show that Mo exists in ferritic stainless steel mainly in the solution treatm... Effects of Mo, Nb, Ti on mechanical properties and corrosion resistance of 22.5% Cr ferritic stainless steel were investigated. The results show that Mo exists in ferritic stainless steel mainly in the solution treatment condition, and it can enhance steel' s strength through solid solution strengthening. In Ti + Nb dual-stabilized ferritic stainless steel, the steel's toughness decreases obviously because coarse TiN particles form and some metallic compounds precipitate along the grain boundaries. In Nb single-stablized ferritic stainless steel, Nb exists either in the solution treatment condition or in the form of dispersed precipitates Nb(C, N), which will act as the nuclei of precipitation of the fine (r phase. As a result, the precipitation of the coarse σ phase along the grain boundary can be inhibited, leading to significant improvement in steel' s toughness at a low temperature. Based on these, high corrosion-resistant ferritic stainless steel B445R was developed for the building cladding system. Test results show that B445R has a superior corrosion resistance to austenitic 316 L in chloride solution. Besides, it has a good forming property and weldability. All these make it an ideal decorating material for the building cladding system in severe coastal regions. 展开更多
关键词 ferritic stainless steel (FSS) pitting corrosion ROOF curtain wall
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部