The maximum possibility of utilizing the Indian coking coals and inferior grade coking coal for producing metallurgical coke through non-recovery stamp charging tech_nology was investigated. Indian indigenous coals co...The maximum possibility of utilizing the Indian coking coals and inferior grade coking coal for producing metallurgical coke through non-recovery stamp charging tech_nology was investigated. Indian indigenous coals contained low percent of vitrinite (〈50%) and higher content of ash (〉15%) compared to imported coking coal. Therefore, the selection of appropriate proportion of different types of coals was a major challenge for coke makers. Coal blend selection criterion based on a single coefficient, named as composite coking potential (CCP), was developed. The use of increased proportion of semi-soft coal (crucible swelling number of 2.5) and high ash (≥15%) indigenous coal in the range of 20%- 35% and 20%-65% respectively in the blends resulted in good quality of coke. Plant data of a non recovery coke oven were used for developing and validating the model. The results showed that the coke strength after reaction (CSR) varied in the range of 63.7%-67.7% and the M40 value was between 81.8 and 89.3 in both the cases.展开更多
文摘The maximum possibility of utilizing the Indian coking coals and inferior grade coking coal for producing metallurgical coke through non-recovery stamp charging tech_nology was investigated. Indian indigenous coals contained low percent of vitrinite (〈50%) and higher content of ash (〉15%) compared to imported coking coal. Therefore, the selection of appropriate proportion of different types of coals was a major challenge for coke makers. Coal blend selection criterion based on a single coefficient, named as composite coking potential (CCP), was developed. The use of increased proportion of semi-soft coal (crucible swelling number of 2.5) and high ash (≥15%) indigenous coal in the range of 20%- 35% and 20%-65% respectively in the blends resulted in good quality of coke. Plant data of a non recovery coke oven were used for developing and validating the model. The results showed that the coke strength after reaction (CSR) varied in the range of 63.7%-67.7% and the M40 value was between 81.8 and 89.3 in both the cases.