In this paper, a stand-alone hybrid microgrid consisting of wind turbines, photovoltaic (PV) arrays and storage battery banks is developed for use in Qinghai Province, China. With the help of Software Homer and Matlab...In this paper, a stand-alone hybrid microgrid consisting of wind turbines, photovoltaic (PV) arrays and storage battery banks is developed for use in Qinghai Province, China. With the help of Software Homer and Matlab, different variables such as annual average wind speed, annual average load demand, and annual capacity shortage are considered. The net present value is then used during an entire project lifetime for the optimization solution.展开更多
Renewable energy sources(RESs)are considered to be reliable and green electric power generation sources.Photovoltaics(PVs)and wind turbines(WTs)are used to provide electricity in remote areas.Optimal sizing of hybrid ...Renewable energy sources(RESs)are considered to be reliable and green electric power generation sources.Photovoltaics(PVs)and wind turbines(WTs)are used to provide electricity in remote areas.Optimal sizing of hybrid RESs is a vital challenge in a stand-alone environment.The meta-heuristic algorithms proposed in the past are dependent on algorithm-specific parameters for achieving an optimal solution.This paper proposes a hybrid algorithm of Jaya and a teaching–learning-based optimization(TLBO)named the JLBO algorithm for the optimal unit sizing of a PV–WT–battery hybrid system to satisfy the consumer’s load at minimal total annual cost(TAC).The reliability of the system is considered by a maximum allowable loss of power supply probability(LPSPmax)concept.The results obtained from the JLBO algorithm are compared with the original Jaya,TLBO,and genetic algorithms.The JLBO results show superior performance in terms of TAC,and the PV–WT–battery hybrid system is found to be the most economical scenario.This system provides a cost-effective solution for all proposed LPSPmax values as compared with PV–battery and WT–battery systems.展开更多
This paper presents a design for a stand-alone photovoltaic (PV) system to provide the required electricity for a single residential household in rural area in Jordan. The complete design steps for the suggested house...This paper presents a design for a stand-alone photovoltaic (PV) system to provide the required electricity for a single residential household in rural area in Jordan. The complete design steps for the suggested household loads are carried out. Site radiation data and the electrical load data of a typical household in the considered site are taken into account during the design steps. The reliability of the system is quantified by the loss of load probability. A computer program is developed to simulate the PV system behavior and to numerically find an optimal combination of PV array and battery bank for the design of stand-alone photovoltaic systems in terms of reliability and costs. The program calculates life cycle cost and annualized unit electrical cost. Simulations results showed that a value of loss of load probability LLP can be met by several combinations of PV array and battery storage. The method developed here uniquely determines the optimum configuration that meets the load demand with the minimum cost. The difference between the costs of these combinations is very large. The optimal unit electrical cost of 1 kWh for LLP = 0.049 is $0.293;while for LLP 0.0027 it is $0.402. The results of the study encouraged the use of the PV systems to electrify the remote sites in Jordan.展开更多
This paper describes the characteristics and optimal methods for the planning of stand-alone microgrid system, in order to improve the power supply reliability, increase the coefficient of utilization of renewable ene...This paper describes the characteristics and optimal methods for the planning of stand-alone microgrid system, in order to improve the power supply reliability, increase the coefficient of utilization of renewable energy and reduce the cost of investment and operation. Next, the problems in the optimal planning for a stand-alone microgrid system are summarized, including the unique operational control targets, the flexible combination approaches and the operation strategies of distributed generation energy supply system, and the special requirements of the reliability of power supply quality factor from the different users. And then, centering on the operational control and the advanced energy management strategy, the optimal mathematical models and the solving methods, the reliability assessment approaches and the improvement measures of a stand-alone microgrid system, an overview of the general situation of the recent research at home and abroad and the limitations of the study are summarized. Finally, several problems, existing in the optimal planning of stand-alone microgrid system, to be urgently solved, are put forward.展开更多
In traditional electricity generation plants,large powerful synchronous,induction,and direct current generators were used.With the proliferation of microgrids focused on electricity generation from renewable energy so...In traditional electricity generation plants,large powerful synchronous,induction,and direct current generators were used.With the proliferation of microgrids focused on electricity generation from renewable energy sources in today’s power grids,studies have been conducted on different types of generators.Instead of the traditional generator architecture,generators with brushless structures,particularly those utilizing magnets for excitation,have found broad applications.Fluxswitching generators(FSGs)are innovative types owing to their robust structure,active stator design,and high power density capabilities.However,designs have typically relied on rare-earth element magnets.Rare-earth magnets possess negative characteristics such as price uncertainty,the potential risk of scarcity in the future,and limited geographical production,leading to research on FSGs that do not depend on rare-earth magnets.This study comprehensively examines FSGs that do not use rare-earth element magnets.The study delves into the usage areas,operational mechanisms,structural diversities,and counterparts in the literature of these generators.展开更多
Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supp...Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.展开更多
This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbin...This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbine and electrical generator), energy storage subsystem, respectively, specific local network subsystem (controlled loads). This wind power system performs in the same time the maximization of wind energy conversion and the power balance between produced and required power. Three structures of the energy storage subsystem, based on buffer battery operation and/or capacitor voltage control, are discussed. The simulation results show that the proposed stand-alone wind power system ensures a good management of the local energy request. The design of the structures is analyzed in Matlab/Simulink environment, using PowerSim toolbox.展开更多
In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltag...In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltage together with the insurance of having computational efficiency under a real-time requirement.Based on the feedback of the bus voltage,the deviation of the current is dispatched to each DG according to cost over the prediction horizon.Moreover,to avoid the excessive fluctuation of the battery power,both the discharge-charge switching times and costs are considered in the model predictive control(MPC) optimization problems.A Lyapunov constraint with a time-varying steady-state is designed in each local MPC to guarantee the stabilization of the entire system.The voltage stabilization of the MG is achieved by this strategy with the cooperation of DGs.The numeric results of applying the proposed method to a MG of the Shanghai Power Supply Company shows the effectiveness of the distributed economic MPC.展开更多
Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template has been studied. The low-cost micro-grid template made by photolithography is used to fabricate the ohmic contact me...Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template has been studied. The low-cost micro-grid template made by photolithography is used to fabricate the ohmic contact metal electrodes. The current increases linearly with the bias, indicating good ohmic contacts between the nanowire and the electrodes. The resistivity of the ZnO nanowire is calculated to be 3.8 Ω·cm. We investigate the photoresponses of an individual ZnO nanowire under different light illumination using light emitting diodes (λ= 505 nm, 460 nm, 375 nm) as excitation sources in atmosphere. When individual ZnO nanowire is exposured to different light irradiation, we find that it is extremely sensitive to UV illumination; the conductance is much larger upon UV illumination than that in the dark at room temperature. This phenomenon may be related to the surface oxygen molecule adsorbtion, which indicates their potential application to the optoelectronic switching device.展开更多
This paper describes a micro-grid system and its monitoring system. This micro-grid system consists of generation systems, consumer electrical equipments, auxiliary equipments and the monitoring system. All the equipm...This paper describes a micro-grid system and its monitoring system. This micro-grid system consists of generation systems, consumer electrical equipments, auxiliary equipments and the monitoring system. All the equipments have 485 communication interfaces. In order to monitor and manage this micro-grid system, we built a monitoring system, which contains modular instrument system and industrial personal computer. In order to keep real time, we adopt some measures in software and hardware. We adopt LABVIEW and its program modules in software and adopt modular instrument system in hardware. Supporting by the software and hardware, the micro-grid system can be safe and stable.展开更多
Micro-grids comprise low voltage distribution systems with distributed energy resources(DERs) and controllable loads which can operate connected to the medium voltage grid or islanded in a controlled coordinated way. ...Micro-grids comprise low voltage distribution systems with distributed energy resources(DERs) and controllable loads which can operate connected to the medium voltage grid or islanded in a controlled coordinated way. This concept aims to move from "connect and forget" philosophy towards a full integration of DERs. Micro-grids can provide numerous economic and environmental benefits for end-customers, utilities and society. However, their implementation poses great technical challenges, such as a new philosophy in design of protection systems. In this work, a micro-grid protection scheme is presented based on positive-sequence component using phasor measurement units(PMUs) and a central protection unit(CPU). The salient feature of the proposed scheme in comparison with the previous works is that it has the ability to protect both radial and looped micro-grids against different types of faults with the capability of single-phase tripping. Furthermore, since the CPU is capable of updating its pickup values(upstream and downstream equivalent positive-sequence impedances of each line) after the first change in the micro-grid configuration(such as transferring from grid-connected to islanded mode and or disconnection of a line, bus, or DER either in grid-connected mode or in islanded mode), it can protect micro-grid against subsequent faults. Finally, in order to verify the effectiveness of the suggested scheme and the CPU, several simulations have been undertaken by using DIg SILENT Power Factory and MATLAB software packages.展开更多
Scarcity of fossil fuel resources has motivated the researchers to develop renewable energy based power projects. Instead of using a single or independent renewable energy source, it is preferable to use the combinati...Scarcity of fossil fuel resources has motivated the researchers to develop renewable energy based power projects. Instead of using a single or independent renewable energy source, it is preferable to use the combination of such energy sources in a distributed way to compensate the power fluctuations of the system and this leads to the concept of hybrid micro-grid energy. Voltage stability is an important parameter for the secure operation of the hybrid-micro grid, and IEEE 1547 Standard defines the limit of the voltage for the successful operation of the micro-grid. Although Vanadium Redox Batteries (VRBs) can help the system to stabilize the voltage when voltage sag occurs when a heavy load is suddenly connected to the system, this stabilization process takes some time. This paper discusses the application of super capacitors to the hybrid micro-grid system, as a higher energy density element, to help the system quickly recover its transient voltage.展开更多
The contribution of Renewable Energy Resources(RER)in the process of power generation is significantly high in the recent days since it paves the way for overcoming the issues like serious energy crisis and natural con...The contribution of Renewable Energy Resources(RER)in the process of power generation is significantly high in the recent days since it paves the way for overcoming the issues like serious energy crisis and natural contamination.This paper deals with the renewable energy based micro-grid as it is regarded as the apt solution for integrating the RER with the electrical frameworks.As thefixed droop coefficients in conventional droop control approaches have caused various limitations like low power-sharing and sudden drops of grid voltage in the Direct Current(DC)side,the Harmonized Membership Fuzzy Logic(MFL)droop control is employed in this present study.This proposed droop control for the hybrid PV-wind-battery system with MFL assists in achieving proper power-sharing and minimizing Total Harmonic Distortion(THD)in the emer-gency micro-grid.It eradicates the deviations in voltage and frequency with itsflexible and robust operation.The THD is reduced and attains the value of 3.1%compared to the traditional droop control.The simulation results of harmo-nized MFL droop control are analogized with the conventional approaches to vali-date the performance of the proposed method.In addition,the experimental results provided by the Field Programmable Gate Array(FPGA)based laboratory setup built using a solar photovoltaic(PV)and wind Permanent Magnet Synchro-nous Generator(PMSG)reaffirms the design.展开更多
The unintentional islanding of micro-grid may cause negative impacts on distribution loads and distributed generations,so it must be detected within the acceptable duration.In this paper a new islanding detection algo...The unintentional islanding of micro-grid may cause negative impacts on distribution loads and distributed generations,so it must be detected within the acceptable duration.In this paper a new islanding detection algorithm is proposed.This algorithm introduces the frequency feedback method by the reactive power compensation to derive the frequency continuous shift. Accordingly,the islanding can be detected by monitoring the frequency within 0.1 s.The simulation results prove that this algorithm has extremely small non-detection zone,and meanwhile it presents an excellent islanding detection speed as well.展开更多
Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, s...Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, so it has been widespread concern. On the other hand due to the extensive use of power electronic devices and many of the loads within micro-grid are nonlinear in nature, Micro-grid generate a large number of harmonics, so harmonics pollution needs to be addressed. Usually we use passive filter to filter out harmonic, in this paper, we propose a new method to optimize the filter parameters, so passive filter can filter out harmonic better. This method utilizes immune particle swarm optimization algorithm to optimize filter parameters. It can be shown from the simulation results that the proposed method is effective for micro-grid voltage harmonics compensation.展开更多
Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration...Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration is related to the steady, safety and economy of micro-grid.In order to improve the absorptive capacity of micro-grid on maximizing the use of distributed PV power in micro-grid, and improve the power quality, an optimal energy storage configuration strategy is proposed, which takes many factors into account, such as the topology of micro-grid, the change of irradiance, the load fluctuation and the cable. The strategy can optimize the energy storage allocation model to minimize the storage power capacity and optimize the node configuration.The key electrical nodes are identified by using the sensitivity coefficient of the voltage, and then the model is optimized to simplify calculation. Finally, an example of the European low-voltage micro-grid and a micro-grid system in the laboratory is used to verify the effectiveness of the proposed method.The results show that the proposed method can optimize the allocation of capacity and the node of the energy storage system.展开更多
This paper presents design, analysis and simulation performance of an active power controller for stable and reliable operation of a micro-grid system. Power balance between generation and consumer is a critical issue...This paper presents design, analysis and simulation performance of an active power controller for stable and reliable operation of a micro-grid system. Power balance between generation and consumer is a critical issue for stable and reliable operation of the micro-grid systems. This issue becomes more critical when a micro-grid system contains stochastic nature distributed generations such as wind and solar because their output power changes non-uniformly. In order to achieve accurate and fast power balance in such a micro-grid system, power in the system has to be regulated continuously. Such an objective can be achieved using droop based alternating current control technique. Because the droop characteristic employed into the developed controller initiates determining the power deviation in the system which is continuously regulated by controlling the current flow into dump power resistors. The designed controller is simulated for the operation of a micro-grid system in stand-alone mode under various operating conditions. The simulated results show the ability of the developed controller for stable and reliable operation of the micro-grid that contains renewable sources. The experimental development of the micro-grid system and the testing of the developed active power controller are presented in PART II of this paper.展开更多
文摘In this paper, a stand-alone hybrid microgrid consisting of wind turbines, photovoltaic (PV) arrays and storage battery banks is developed for use in Qinghai Province, China. With the help of Software Homer and Matlab, different variables such as annual average wind speed, annual average load demand, and annual capacity shortage are considered. The net present value is then used during an entire project lifetime for the optimization solution.
文摘Renewable energy sources(RESs)are considered to be reliable and green electric power generation sources.Photovoltaics(PVs)and wind turbines(WTs)are used to provide electricity in remote areas.Optimal sizing of hybrid RESs is a vital challenge in a stand-alone environment.The meta-heuristic algorithms proposed in the past are dependent on algorithm-specific parameters for achieving an optimal solution.This paper proposes a hybrid algorithm of Jaya and a teaching–learning-based optimization(TLBO)named the JLBO algorithm for the optimal unit sizing of a PV–WT–battery hybrid system to satisfy the consumer’s load at minimal total annual cost(TAC).The reliability of the system is considered by a maximum allowable loss of power supply probability(LPSPmax)concept.The results obtained from the JLBO algorithm are compared with the original Jaya,TLBO,and genetic algorithms.The JLBO results show superior performance in terms of TAC,and the PV–WT–battery hybrid system is found to be the most economical scenario.This system provides a cost-effective solution for all proposed LPSPmax values as compared with PV–battery and WT–battery systems.
文摘This paper presents a design for a stand-alone photovoltaic (PV) system to provide the required electricity for a single residential household in rural area in Jordan. The complete design steps for the suggested household loads are carried out. Site radiation data and the electrical load data of a typical household in the considered site are taken into account during the design steps. The reliability of the system is quantified by the loss of load probability. A computer program is developed to simulate the PV system behavior and to numerically find an optimal combination of PV array and battery bank for the design of stand-alone photovoltaic systems in terms of reliability and costs. The program calculates life cycle cost and annualized unit electrical cost. Simulations results showed that a value of loss of load probability LLP can be met by several combinations of PV array and battery storage. The method developed here uniquely determines the optimum configuration that meets the load demand with the minimum cost. The difference between the costs of these combinations is very large. The optimal unit electrical cost of 1 kWh for LLP = 0.049 is $0.293;while for LLP 0.0027 it is $0.402. The results of the study encouraged the use of the PV systems to electrify the remote sites in Jordan.
文摘This paper describes the characteristics and optimal methods for the planning of stand-alone microgrid system, in order to improve the power supply reliability, increase the coefficient of utilization of renewable energy and reduce the cost of investment and operation. Next, the problems in the optimal planning for a stand-alone microgrid system are summarized, including the unique operational control targets, the flexible combination approaches and the operation strategies of distributed generation energy supply system, and the special requirements of the reliability of power supply quality factor from the different users. And then, centering on the operational control and the advanced energy management strategy, the optimal mathematical models and the solving methods, the reliability assessment approaches and the improvement measures of a stand-alone microgrid system, an overview of the general situation of the recent research at home and abroad and the limitations of the study are summarized. Finally, several problems, existing in the optimal planning of stand-alone microgrid system, to be urgently solved, are put forward.
文摘In traditional electricity generation plants,large powerful synchronous,induction,and direct current generators were used.With the proliferation of microgrids focused on electricity generation from renewable energy sources in today’s power grids,studies have been conducted on different types of generators.Instead of the traditional generator architecture,generators with brushless structures,particularly those utilizing magnets for excitation,have found broad applications.Fluxswitching generators(FSGs)are innovative types owing to their robust structure,active stator design,and high power density capabilities.However,designs have typically relied on rare-earth element magnets.Rare-earth magnets possess negative characteristics such as price uncertainty,the potential risk of scarcity in the future,and limited geographical production,leading to research on FSGs that do not depend on rare-earth magnets.This study comprehensively examines FSGs that do not use rare-earth element magnets.The study delves into the usage areas,operational mechanisms,structural diversities,and counterparts in the literature of these generators.
文摘Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.
文摘This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbine and electrical generator), energy storage subsystem, respectively, specific local network subsystem (controlled loads). This wind power system performs in the same time the maximization of wind energy conversion and the power balance between produced and required power. Three structures of the energy storage subsystem, based on buffer battery operation and/or capacitor voltage control, are discussed. The simulation results show that the proposed stand-alone wind power system ensures a good management of the local energy request. The design of the structures is analyzed in Matlab/Simulink environment, using PowerSim toolbox.
基金supported by the National Key R&D Program of China (2018AAA0101701)the National Natural Science Foundation of China (62073220,61833012)。
文摘In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltage together with the insurance of having computational efficiency under a real-time requirement.Based on the feedback of the bus voltage,the deviation of the current is dispatched to each DG according to cost over the prediction horizon.Moreover,to avoid the excessive fluctuation of the battery power,both the discharge-charge switching times and costs are considered in the model predictive control(MPC) optimization problems.A Lyapunov constraint with a time-varying steady-state is designed in each local MPC to guarantee the stabilization of the entire system.The voltage stabilization of the MG is achieved by this strategy with the cooperation of DGs.The numeric results of applying the proposed method to a MG of the Shanghai Power Supply Company shows the effectiveness of the distributed economic MPC.
基金supported by the National Natural Science Foundation of China (Grant Nso. 60776010,60940021 and 11074060)the Natural Science Foundation of Heilongjiang Province,China (Grant No. A2008-07)the Doctoral Start-up Fund of Harbin Normal University,China
文摘Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template has been studied. The low-cost micro-grid template made by photolithography is used to fabricate the ohmic contact metal electrodes. The current increases linearly with the bias, indicating good ohmic contacts between the nanowire and the electrodes. The resistivity of the ZnO nanowire is calculated to be 3.8 Ω·cm. We investigate the photoresponses of an individual ZnO nanowire under different light illumination using light emitting diodes (λ= 505 nm, 460 nm, 375 nm) as excitation sources in atmosphere. When individual ZnO nanowire is exposured to different light irradiation, we find that it is extremely sensitive to UV illumination; the conductance is much larger upon UV illumination than that in the dark at room temperature. This phenomenon may be related to the surface oxygen molecule adsorbtion, which indicates their potential application to the optoelectronic switching device.
文摘This paper describes a micro-grid system and its monitoring system. This micro-grid system consists of generation systems, consumer electrical equipments, auxiliary equipments and the monitoring system. All the equipments have 485 communication interfaces. In order to monitor and manage this micro-grid system, we built a monitoring system, which contains modular instrument system and industrial personal computer. In order to keep real time, we adopt some measures in software and hardware. We adopt LABVIEW and its program modules in software and adopt modular instrument system in hardware. Supporting by the software and hardware, the micro-grid system can be safe and stable.
文摘Micro-grids comprise low voltage distribution systems with distributed energy resources(DERs) and controllable loads which can operate connected to the medium voltage grid or islanded in a controlled coordinated way. This concept aims to move from "connect and forget" philosophy towards a full integration of DERs. Micro-grids can provide numerous economic and environmental benefits for end-customers, utilities and society. However, their implementation poses great technical challenges, such as a new philosophy in design of protection systems. In this work, a micro-grid protection scheme is presented based on positive-sequence component using phasor measurement units(PMUs) and a central protection unit(CPU). The salient feature of the proposed scheme in comparison with the previous works is that it has the ability to protect both radial and looped micro-grids against different types of faults with the capability of single-phase tripping. Furthermore, since the CPU is capable of updating its pickup values(upstream and downstream equivalent positive-sequence impedances of each line) after the first change in the micro-grid configuration(such as transferring from grid-connected to islanded mode and or disconnection of a line, bus, or DER either in grid-connected mode or in islanded mode), it can protect micro-grid against subsequent faults. Finally, in order to verify the effectiveness of the suggested scheme and the CPU, several simulations have been undertaken by using DIg SILENT Power Factory and MATLAB software packages.
文摘Scarcity of fossil fuel resources has motivated the researchers to develop renewable energy based power projects. Instead of using a single or independent renewable energy source, it is preferable to use the combination of such energy sources in a distributed way to compensate the power fluctuations of the system and this leads to the concept of hybrid micro-grid energy. Voltage stability is an important parameter for the secure operation of the hybrid-micro grid, and IEEE 1547 Standard defines the limit of the voltage for the successful operation of the micro-grid. Although Vanadium Redox Batteries (VRBs) can help the system to stabilize the voltage when voltage sag occurs when a heavy load is suddenly connected to the system, this stabilization process takes some time. This paper discusses the application of super capacitors to the hybrid micro-grid system, as a higher energy density element, to help the system quickly recover its transient voltage.
文摘The contribution of Renewable Energy Resources(RER)in the process of power generation is significantly high in the recent days since it paves the way for overcoming the issues like serious energy crisis and natural contamination.This paper deals with the renewable energy based micro-grid as it is regarded as the apt solution for integrating the RER with the electrical frameworks.As thefixed droop coefficients in conventional droop control approaches have caused various limitations like low power-sharing and sudden drops of grid voltage in the Direct Current(DC)side,the Harmonized Membership Fuzzy Logic(MFL)droop control is employed in this present study.This proposed droop control for the hybrid PV-wind-battery system with MFL assists in achieving proper power-sharing and minimizing Total Harmonic Distortion(THD)in the emer-gency micro-grid.It eradicates the deviations in voltage and frequency with itsflexible and robust operation.The THD is reduced and attains the value of 3.1%compared to the traditional droop control.The simulation results of harmo-nized MFL droop control are analogized with the conventional approaches to vali-date the performance of the proposed method.In addition,the experimental results provided by the Field Programmable Gate Array(FPGA)based laboratory setup built using a solar photovoltaic(PV)and wind Permanent Magnet Synchro-nous Generator(PMSG)reaffirms the design.
基金National High-Tech R&D Program of China(No.2007AA05Z241).
文摘The unintentional islanding of micro-grid may cause negative impacts on distribution loads and distributed generations,so it must be detected within the acceptable duration.In this paper a new islanding detection algorithm is proposed.This algorithm introduces the frequency feedback method by the reactive power compensation to derive the frequency continuous shift. Accordingly,the islanding can be detected by monitoring the frequency within 0.1 s.The simulation results prove that this algorithm has extremely small non-detection zone,and meanwhile it presents an excellent islanding detection speed as well.
文摘Distributed generation has attracted great attention in recent years, thanks to the progress in new-generation technologies and advanced power electronics. And micro-grid can make full use of distributed generation, so it has been widespread concern. On the other hand due to the extensive use of power electronic devices and many of the loads within micro-grid are nonlinear in nature, Micro-grid generate a large number of harmonics, so harmonics pollution needs to be addressed. Usually we use passive filter to filter out harmonic, in this paper, we propose a new method to optimize the filter parameters, so passive filter can filter out harmonic better. This method utilizes immune particle swarm optimization algorithm to optimize filter parameters. It can be shown from the simulation results that the proposed method is effective for micro-grid voltage harmonics compensation.
基金Supported by the National Program of International S&T Cooperation(No.2014DFE60020)Natural Science Foundation of Zhejiang Province(No.LY15E070004)
文摘Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration is related to the steady, safety and economy of micro-grid.In order to improve the absorptive capacity of micro-grid on maximizing the use of distributed PV power in micro-grid, and improve the power quality, an optimal energy storage configuration strategy is proposed, which takes many factors into account, such as the topology of micro-grid, the change of irradiance, the load fluctuation and the cable. The strategy can optimize the energy storage allocation model to minimize the storage power capacity and optimize the node configuration.The key electrical nodes are identified by using the sensitivity coefficient of the voltage, and then the model is optimized to simplify calculation. Finally, an example of the European low-voltage micro-grid and a micro-grid system in the laboratory is used to verify the effectiveness of the proposed method.The results show that the proposed method can optimize the allocation of capacity and the node of the energy storage system.
文摘This paper presents design, analysis and simulation performance of an active power controller for stable and reliable operation of a micro-grid system. Power balance between generation and consumer is a critical issue for stable and reliable operation of the micro-grid systems. This issue becomes more critical when a micro-grid system contains stochastic nature distributed generations such as wind and solar because their output power changes non-uniformly. In order to achieve accurate and fast power balance in such a micro-grid system, power in the system has to be regulated continuously. Such an objective can be achieved using droop based alternating current control technique. Because the droop characteristic employed into the developed controller initiates determining the power deviation in the system which is continuously regulated by controlling the current flow into dump power resistors. The designed controller is simulated for the operation of a micro-grid system in stand-alone mode under various operating conditions. The simulated results show the ability of the developed controller for stable and reliable operation of the micro-grid that contains renewable sources. The experimental development of the micro-grid system and the testing of the developed active power controller are presented in PART II of this paper.