期刊文献+
共找到96,500篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of layer thickness on formation quality,microstructure,mechanical properties,and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion 被引量:2
1
作者 Bangzhao Yin Jinge Liu +7 位作者 Bo Peng Mengran Zhou Bingchuan Liu Xiaolin Ma Caimei Wang Peng Wen Yun Tian Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1367-1385,共19页
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not... Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases. 展开更多
关键词 Magnesium alloy WE43 Laser powder bed fusion layer thickness Process optimization
下载PDF
Significantly Improved High-Temperature Energy Storage Performance of BOPP Films by Coating Nanoscale Inorganic Layer 被引量:1
2
作者 Tiandong Zhang Hainan Yu +5 位作者 Young Hoon Jung Changhai Zhang Yu Feng Qingguo Chen Keon Jae Lee Qingguo Chi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期30-38,共9页
Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high tempe... Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films. 展开更多
关键词 coating layer energy storage interfacial barrier polymer films
下载PDF
Probabilistic analysis of tunnel face seismic stability in layered rock masses using Polynomial Chaos Kriging metamodel 被引量:2
3
作者 Jianhong Man Tingting Zhang +1 位作者 Hongwei Huang Daniel Dias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2678-2693,共16页
Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines... Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction. 展开更多
关键词 Tunnel face stability layered rock masses Polynomial Chaos Kriging(PCK) Sensitivity index Seismic loadings
下载PDF
Physical Layer Encryption of OFDM-PON Based on Quantum Noise Stream Cipher with Polar Code 被引量:1
4
作者 Xu Yinbo Gao Mingyi +3 位作者 Zhu Huaqing Chen Bowen Xiang Lian Shen Gangxiang 《China Communications》 SCIE CSCD 2024年第3期174-188,共15页
Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e... Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security. 展开更多
关键词 physical layer encryption polar code quantum noise stream cipher
下载PDF
High‑Entropy Layered Oxide Cathode Enabling High‑Rate for Solid‑State Sodium‑Ion Batteries 被引量:1
5
作者 Tianxun Cai Mingzhi Cai +5 位作者 Jinxiao Mu Siwei Zhao Hui Bi Wei Zhao Wujie Dong Fuqiang Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期160-171,共12页
Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instabilit... Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries. 展开更多
关键词 High-entropy High-rate performance Li-TM interaction Air stability O3 layered oxide cathode
下载PDF
Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries 被引量:1
6
作者 Kouthaman Mathiyalagan Dongwoo Shin Young-Chul Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期40-57,I0003,共19页
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi... Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs. 展开更多
关键词 O3-type P2-type Cathode materials Sodium-ion batteries layered structure
下载PDF
Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding 被引量:1
7
作者 Jianming Yang Hu Wang +2 位作者 Yali Zhang Hexin Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期273-286,共14页
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th... The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment. 展开更多
关键词 Electromagnetic interference shielding layered structure Supercritical carbon dioxide foaming Poly(butyleneadipateco-terephthalate) MICROCELLULAR
下载PDF
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer 被引量:1
8
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping 被引量:1
9
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation Electrocatalysis Cl^(-) repulsion
下载PDF
基于YOLOv5_4layers的PCB小目标缺陷识别方法 被引量:1
10
作者 杨萍萍 白艳茹 《仪表技术与传感器》 CSCD 北大核心 2024年第3期75-79,共5页
针对PCB表面缺陷分辨率低、小目标性以及多样性等问题,提出了一种基于YOLOv5_4layers的PCB小目标缺陷识别方法。该方法在YOLOv5架构的基础上,通过新增采样层的方式添加小目标检测层,优化特征金字塔模型,提升小目标特征提取性能,实现小... 针对PCB表面缺陷分辨率低、小目标性以及多样性等问题,提出了一种基于YOLOv5_4layers的PCB小目标缺陷识别方法。该方法在YOLOv5架构的基础上,通过新增采样层的方式添加小目标检测层,优化特征金字塔模型,提升小目标特征提取性能,实现小目标缺陷识别。在调整合适的锚框规格后,改进后的模型在输入640像素×640像素图像时,相较原模型识别精确率提升了7.5%。在输入736像素×736像素图像时,识别精确率提升了1.3%,有效地提升了对PCB小目标缺陷的识别能力,对提高PCB制造过程的质量控制和产品可靠性具有实际意义。 展开更多
关键词 PCB 小目标缺陷识别 深度学习 YOLOv5_4layers 特征提取
下载PDF
EECLP: AWireless Sensor Networks Energy Efficient Cross-Layer Protocol
11
作者 Mohammed Kaddi Mohammed Omari Moamen Alnatoor 《Computers, Materials & Continua》 SCIE EI 2024年第8期2611-2631,共21页
Recent advancements in wireless communications have allowed the birth of novel wireless sensor networks(WSN).A sensor network comprises several micro-sensors deployed randomly in an area of interest.A micro-sensor is ... Recent advancements in wireless communications have allowed the birth of novel wireless sensor networks(WSN).A sensor network comprises several micro-sensors deployed randomly in an area of interest.A micro-sensor is provided with an energy resource to supply electricity to all of its components.However,the disposed energy resource is limited and battery replacement is generally infeasible.With this restriction,the sensors must conserve energy to prolong their lifetime.Various energy conservation strategies for WSNs have been presented in the literature,from the application to the physical layer.Most of these solutions focus only on optimizing a single layer in terms of energy consumption.In this research,a novel cross-layer technique for WSNs’effective energy usage is presented.Because most energy consumption factors exist in the Medium Access Control(MAC)layer and network layer,our EECLP protocol(Energy Efficient Cross-Layer Protocol for Wireless Sensor Networks)integrates these two layers to satisfy energy efficiency criteria.To gain access to the transmission channel,we implement a communication regime at the MAC layer based on CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)techniques.Next,depending on the activity and a standby period,we employ the RTS/CTS(Request to Send/Clear to Send)method to prevent collisions and resolve hidden node concerns by utilizing the network allocation vector(NAV)to calculate the transmission duration.Employing a greedy strategy,we establish chains amongst cluster members to mitigate the issue of high energy consumption in routing data.An objective function was utilized to determine the optimal cross-chain path based on the distances to the base station(BS)and residual energy(RE).The simulation,testing,and comparison of the proposed protocol to peer protocols have shown superior outcomes and a prolonged network lifespan.Using the suggested protocol,the network lifetime increases by 10%compared to FAMACO(Fuzzy and Ant Colony Optimization based MAC/Routing Cross-layer)protocol,and it increases by 90%and 95%compared to IFUC(Improved Fuzzy Unequal Clustering)and UHEED(Unequal Hybrid Energy Efficient and Distributed)protocols successively. 展开更多
关键词 WSN energy consumption MAC layer network layer EECLP ENERGY-EFFICIENT LIFESPAN
下载PDF
Pile foundation in alternate layered liquefiable and non-liquefiable soil deposits subjected to earthquake loading
12
作者 Praveen Huded M Suresh R Dash 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期359-376,共18页
Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile found... Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile foundations in liquefiable soils has primarily focused on the pile foundation behavior in two or three-layered soil profiles.However,in natural occurrence,it may occur in alternative layers of liquefiable and non-liquefiable soil.However,the experimental and/or numerical studies on the layered effect on pile foundations have not been widely addressed in the literature.Most of the design codes across the world do not explicitly mention the effect of sandwiched non-liquefiable soil layers on the pile response.In the present study,the behavior of an end-bearing pile in layered liquefiable and non-liquefiable soil deposit is studied numerically.This study found that the kinematic bending moment is higher and governs the design when the effect of the sandwiched non-liquefied layer is considered in the analysis as opposed to when its effect is ignored.Therefore,ignoring the effect of the sandwiched non-liquefied layer in a liquefiable soil deposit might be a nonconservative design approach. 展开更多
关键词 pile foundation LIQUEFACTION alternately layered soil fixity effect layered effect
下载PDF
Impact of Dietary Lactobacillus plantarum Postbiotics on the Performance of Layer Hens under Heat Stress Conditions
13
作者 Mohamad Farran Bouchra El Masry +1 位作者 Zeinab Kaouk Houssam Shaib 《Open Journal of Veterinary Medicine》 CAS 2024年第3期39-55,共17页
This experiment was conducted to determine the performance of heat-stressed layers fed a diet containing the probiotic Lactobacillus plantarum RS5 or its products of fermentation (postbiotics). Twenty-week-old Isa Whi... This experiment was conducted to determine the performance of heat-stressed layers fed a diet containing the probiotic Lactobacillus plantarum RS5 or its products of fermentation (postbiotics). Twenty-week-old Isa White layers, were subdivided into six treatments of 32 individually caged birds. Half of the birds were reared under regular temperature conditions, while the other half was subjected to cyclic daily heat stress. Layers were offered one of three diets: 1) Control;2) Control + Lactobacillus plantarum RS5 probiotic;3) Control + Lactobacillus plantarum RS5 postbiotics. Birds were tested for performance and visceral organ development for 5 months. Heat stress negatively affected the birds’ feed intake, egg weight, shell weight percentage, Haugh unit, shell thickness, yolk color, body weight and spleen weight percentage. Postbiotics significantly increased egg production (p < 0.05) in comparison to the control and the probiotic fed group (94.8% vs 92.6% vs 93.1%, respectively). Birds under probiotic or postbiotic diet showed a significantly higher (p < 0.05) feed intake and egg weight, although the probiotic had a more pronounced and gradual effect. Specific gravity, yolk weight percentage and shell thickness didn’t show differences among dietary groups. The Haugh Unit was significantly higher (p < 0.05) in probiotic group which also showed a significantly lower yolk color index (p < 0.05). The different feed treatments did not impact the bird’s viscera weight percentage, except for the ileum that was significantly lower (p < 0.05) under postbiotic supplementation. Both probiotics and postbiotics could be used as a potential growth promoters and might alleviate heat stress impact in poultry industry. 展开更多
关键词 Lactobacillus plantarum layerS Heat Stress Postbiotic PROBIOTICS PERFORMANCE
下载PDF
Interception of Layered LP-N and HLP-N at Ambient Conditions by Confined Template
14
作者 王冬雪 付静 +3 位作者 李义 姚震 刘爽 刘冰冰 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期61-72,共12页
We propose a feasible strategy of intercepting the layered polymeric nitrogen(LP-N)and hexagonal layered polymeric nitrogen(HLP-N)at ambient conditions by using the confinement templates.The stable mechanism of confin... We propose a feasible strategy of intercepting the layered polymeric nitrogen(LP-N)and hexagonal layered polymeric nitrogen(HLP-N)at ambient conditions by using the confinement templates.The stable mechanism of confined LP-N and HLP-N at ambient conditions is revealed. 展开更多
关键词 AMBIENT layerED polymeric
下载PDF
Layer by Layer Self-assembly Fiber-based Flexible Electrochemical Transistor
15
作者 谭艳 HAO Panpan +2 位作者 HE Yang ZHU Rufeng 王跃丹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期937-944,共8页
Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface mo... Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application. 展开更多
关键词 layer by layer SELF-ASSEMBLY fiber based organic electrochemical transistor reduced graphene oxide PEDOT:PSS
下载PDF
Values of macular ganglion cell-inner plexiform layer and 10-2 visual field measurements in detecting and evaluating glaucoma
16
作者 Hai-Jian Hu Ping Li +7 位作者 Bin Tong Yu-Lian Pang Hong-Dou Luo Fei-Fei Wang Chan Xiong Yu-Lin Yu Hai He Xu Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第5期852-860,共9页
AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:T... AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:Totally 127 eyes from 89 participants(36 eyes of 19 healthy participants,45 eyes of 31 early glaucoma patients and 46 eyes of 39 advanced glaucoma patients)were included.The relationships between the optical coherence tomography(OCT)-derived parameters and VF sensitivity were determined.Patients with early glaucoma were divided into eyes with or without central 10°of the VF damages(CVFDs),and the diagnostic performances of OCT-derived parameters were assessed.RESULTS:In early glaucoma,the mGCIPLT was significantly correlated with 10-2 VF pattern standard deviation(PSD;with average mGCIPLT:β=-0.046,95%CI,-0.067 to-0.024,P<0.001).In advanced glaucoma,the mGCIPLT was related to the 24-2 VF mean deviation(MD;with average mGCIPLT:β=0.397,95%CI,0.199 to 0.595,P<0.001),10-2 VF MD(with average mGCIPLT:β=0.762,95%CI,0.485 to 1.038,P<0.001)and 24-2 VF PSD(with average mGCIPLT:β=0.244,95%CI,0.124 to 0.364,P<0.001).Except for the minimum and superotemporal mGCIPLT,the decrease of mGCIPLT in early glaucomatous eyes with CVFDs was more severe than that of early glaucomatous eyes without CVFDs.The area under the curve(AUC)of the average mGCIPLT(AUC=0.949,95%CI,0.868 to 0.982)was greater than that of the average circumpapillary retinal nerve fiber layer thickness(cpRNFLT;AUC=0.827,95%CI,0.674 to 0.918)and rim area(AUC=0.799,95%CI,0.610 to 0.907)in early glaucomatous eyes with CVFDs versus normal eyes.CONCLUSION:The 10-2 VF and mGCIPLT parameters are complementary to 24-2 VF,cpRNFLT and ONH parameters,especially in detecting early glaucoma with CVFDs and evaluating the severity of advanced glaucoma in group level. 展开更多
关键词 10-2 visual field ganglion cell-inner plexiform layer retinal nerve fiber layer thickness GLAUCOMA
下载PDF
Atomic layer deposition in advanced display technologies:from photoluminescence to encapsulation
17
作者 Rong Chen Kun Cao +4 位作者 Yanwei Wen Fan Yang Jian Wang Xiao Liu Bin Shan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期65-82,共18页
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ... Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry. 展开更多
关键词 atomic layer deposition DISPLAY LUMINESCENT ENCAPSULATION
下载PDF
Defective Nickel-Iron Layered Double Hydroxide for Enhanced Photocatalytic NO Oxidation with Significant Alleviation of NO2 Production
18
作者 Xiaoyu Li Xiaoshu Lv +6 位作者 Jian Pan Peng Chen Huihui Peng Yan Jiang Haifeng Gong Guangming Jiang Li’an Hou 《Engineering》 SCIE EI CAS CSCD 2024年第5期276-284,共9页
Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to ... Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission. 展开更多
关键词 Vacancie layered double hydroxide NO+ PHOTOCATALYSIS NO removal
下载PDF
What If the Protection against Oxidation of Chromia-Forming Alloys Was Not Always Due to the Chromia Layer?
19
作者 Boris Contri Stéphane Valette +1 位作者 Marina Soustre Pierre Lefort 《American Journal of Analytical Chemistry》 CAS 2024年第9期286-302,共17页
Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts... Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications. 展开更多
关键词 Chromia-Forming Alloys Chromia layer Oxidation Protection Inconel®625 Kinetics
下载PDF
Anode surface engineering of zinc-ion batteries using tellurium nanobelt as a protective layer for enhancing energy storage performance
20
作者 Soobeom Lee Yeonjin Je +7 位作者 Boeun Seok Hyun Tae Kim Yong-Ryun Jo Soong Ju Oh Byoungyong Im Dae Guen Kim Sang-Soo Chee Geon-Hyoung An 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期113-123,共11页
Over the years,zinc-ion batteries(ZIBs)have attracted attention as a promising next-generation energy storage technology because of their excellent safety,long cycling performance,eco-friendliness,and high-power densi... Over the years,zinc-ion batteries(ZIBs)have attracted attention as a promising next-generation energy storage technology because of their excellent safety,long cycling performance,eco-friendliness,and high-power density.However,issues,such as the corrosion and dissolution of the Zn anode,limited wet-tability,and lack of sufficient nucleation sites for Zn plating,have limited their practical application.The introduction of a protective layer comprising of tellurium(Te)nanobelts onto the surface of Zn anode has emerged as a promising approach to overcome these limitations and improve the electrochemical behav-ior by enhancing the safety and wettability of ZIBs,as well as providing numerous nucleation sites for Zn plating.In the presence of a Te-based protective layer,the energy power density of the surface-engineered Zn anode improved significantly(ranging from 310 to 144 W h kg^(-1),over a power density range of 270 to 1,800 W kg^(-1)),and the lifespan capability was extended.These results demonstrate that the proposed strategy of employing Te nanobelts as a protective layer holds great promise for enhancing the energy storage performance of zIBs,making them even more attractive as a viable energy storage solution forthefuture. 展开更多
关键词 Zn ion battery ANODE Protective layer TELLURIUM NANOBELT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部