A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to appro...A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities (LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design procedure, and the performance of the proposed approach is compared with that of a related method reported in literature.展开更多
To extend the traditional generalized grey incidence model, a novel grey incidence model based on inter- val grey numbers is constructed. Considering the numerical information of indexes cannot be accurately obtained ...To extend the traditional generalized grey incidence model, a novel grey incidence model based on inter- val grey numbers is constructed. Considering the numerical information of indexes cannot be accurately obtained and can be defined as interval grey numbers, the interval grey numbers are defined as standard interval grey num- bers which are split in white part and grey part. The absolute degree of incidence and relative degree of incidence based on the interval grey numbers are constructed and their arithmetic are given. Finally, an example about commercial aircraft index selection illuminates the effectiveness of the model. The results show that the model can sort indexes better and can extend the grey incidence models significantly.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 60504024), and Zhejiang Provincial Education Depart-ment (No. 20050905), China
文摘A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities (LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design procedure, and the performance of the proposed approach is compared with that of a related method reported in literature.
基金Supported by the National Natural Science Foundation of China(70901041,71171113)the Joint Research Project of National Natural Science Foundation of China and Royal Society of UK(71111130211)+3 种基金the Major Program of National Funds of Social Science of Chinathe Doctoral Fund of Ministry of Education of China(20093218120032,200802870020)the Qinglan Project for Excellent Youth Teacher in Jiangsu Province(China)the Research Funding of Nanjing University of Aeronautics and Astronautics(NR2011002,NJ2011009)~~
文摘To extend the traditional generalized grey incidence model, a novel grey incidence model based on inter- val grey numbers is constructed. Considering the numerical information of indexes cannot be accurately obtained and can be defined as interval grey numbers, the interval grey numbers are defined as standard interval grey num- bers which are split in white part and grey part. The absolute degree of incidence and relative degree of incidence based on the interval grey numbers are constructed and their arithmetic are given. Finally, an example about commercial aircraft index selection illuminates the effectiveness of the model. The results show that the model can sort indexes better and can extend the grey incidence models significantly.