To ensure the security of a digital image, a new self-adapting encryption algorithm based on the spatiotemporal chaos and ergodic matrix is proposed in this paper. First, the plain-image is divided into different bloc...To ensure the security of a digital image, a new self-adapting encryption algorithm based on the spatiotemporal chaos and ergodic matrix is proposed in this paper. First, the plain-image is divided into different blocks of the same size, and each block is sorted in ascending order to obtain the corresponding standard ergodic matrix. Then each block is encrypted by the spatiotemporal chaotic system and shuffled according to the standard ergodic matrix. Finally, all modules are rearranged to acquire the final encrypted image. In particular, the plain-image information is used in the initial conditions of the spatiotemporal chaos and the ergodic matrices, so different plain-images will be encrypted to obtain different cipherimages. Theoretical analysis and simulation results indicate that the performance and security of the proposed encryption scheme can encrypt the image effectively and resist various typical attacks.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.U0735004 and 60972133)the Natural Science Foundation of Guangdong Province,China(Grant No.05006593)+2 种基金the Project Team for Natural Science Foundation of Guangdong Province,China(Grant No.9351064101000003)Energy Technology Key Laboratory Project of Guangdong Province,China(Grant No.2008A060301002)the Fundamental Research Funds for the Central Universities,China(Grant No.X2dXD2116370)
文摘To ensure the security of a digital image, a new self-adapting encryption algorithm based on the spatiotemporal chaos and ergodic matrix is proposed in this paper. First, the plain-image is divided into different blocks of the same size, and each block is sorted in ascending order to obtain the corresponding standard ergodic matrix. Then each block is encrypted by the spatiotemporal chaotic system and shuffled according to the standard ergodic matrix. Finally, all modules are rearranged to acquire the final encrypted image. In particular, the plain-image information is used in the initial conditions of the spatiotemporal chaos and the ergodic matrices, so different plain-images will be encrypted to obtain different cipherimages. Theoretical analysis and simulation results indicate that the performance and security of the proposed encryption scheme can encrypt the image effectively and resist various typical attacks.