In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
Currently, therapy for squamous cancer (SqC) is unsatisfactory. Staphylococcal enterotoxin B (SEB) has strong immune regulatory activity. This study tests the hypothesis that SEB enforces the effect of immunothera...Currently, therapy for squamous cancer (SqC) is unsatisfactory. Staphylococcal enterotoxin B (SEB) has strong immune regulatory activity. This study tests the hypothesis that SEB enforces the effect of immunotherapy on SqC growth in a mouse model. C3H/HeN mice and the SqC cell line squamous cell carcinoma VII were used to create an SqC mouse model. Immune cell assessment was performed by flow cytometry. Real-time RT-PCR and western blotting were used to evaluate target molecule expression. An apoptosis assay was used to assess the suppressive effect of T helper-9 (Th9) cells on the SqC cells. The results showed that immunotherapy consisting of SEB plus SqC antigen significantly inhibited SqC growth in the mice. The frequency of Th9 cells was markedly increased in the SqC tissue and mouse spleens after treatment. SEB markedly increased the levels of signal transducer and activator of transcription 5 phosphorylation and the expression of histone deacetylase-1 (HDAC1) and PU.1 (the transcription factor of the interleukin 9 (IL-9) gene) in CD4^+ T cells. Exposure to SqC-specific Th9 cells markedly induced SqC cell apoptosis both in vitro and in vivo. In conclusion, the administration of SEB induces Th9 cells in SqC-bearing mice, and theseTh9 cells inhibit SqC growth.展开更多
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
基金This study was supported by grants from the Innovation of Science and Technology Commission of Shenzhen Municipality (JCYJ20140418095735538, JCYJ20120613161724279 JCYJ20120613172559904+3 种基金 JCYJ20130329110735981 JCYJ20120613173233810) International Collaboration Project (GJHZ20130408174112021) and the National Nature Science Foundation and China (81373176).
文摘Currently, therapy for squamous cancer (SqC) is unsatisfactory. Staphylococcal enterotoxin B (SEB) has strong immune regulatory activity. This study tests the hypothesis that SEB enforces the effect of immunotherapy on SqC growth in a mouse model. C3H/HeN mice and the SqC cell line squamous cell carcinoma VII were used to create an SqC mouse model. Immune cell assessment was performed by flow cytometry. Real-time RT-PCR and western blotting were used to evaluate target molecule expression. An apoptosis assay was used to assess the suppressive effect of T helper-9 (Th9) cells on the SqC cells. The results showed that immunotherapy consisting of SEB plus SqC antigen significantly inhibited SqC growth in the mice. The frequency of Th9 cells was markedly increased in the SqC tissue and mouse spleens after treatment. SEB markedly increased the levels of signal transducer and activator of transcription 5 phosphorylation and the expression of histone deacetylase-1 (HDAC1) and PU.1 (the transcription factor of the interleukin 9 (IL-9) gene) in CD4^+ T cells. Exposure to SqC-specific Th9 cells markedly induced SqC cell apoptosis both in vitro and in vivo. In conclusion, the administration of SEB induces Th9 cells in SqC-bearing mice, and theseTh9 cells inhibit SqC growth.