In this paper,numerical analyses of fluid flow around the ship hulls such as Series 60,the Kriso Container Ship(KCS),and catamaran advancing in calm water,are presented.A commercial computational fluid dynamic(CFD)cod...In this paper,numerical analyses of fluid flow around the ship hulls such as Series 60,the Kriso Container Ship(KCS),and catamaran advancing in calm water,are presented.A commercial computational fluid dynamic(CFD)code,STAR-CCM+is used to analyze total resistance,sinkage,trim,wave profile,and wave pattern for a range of Froude numbers.The governing RANS equations of fluid flow are discretized using the finite volume method(FVM),and the pressure-velocity coupling equations are solved using the SIMPLE(semi-implicit method for pressure linked equations)algorithm.Volume of fluid(VOF)method is employed to capture the interface between air and water phases.A fine discretization is performed in between these two phases to get a higher mesh resolution.The fluid-structure interaction(FSI)is modeled with the dynamic fluid-body interaction(DFBI)module within the STAR-CCM+.The numerical results are verified using the results available in the literatures.Grid convergence studies are also carried out to determine the dependence of results on the grid quality.In comparison to previous findings,the current CFD analysis shows the satisfactory results.展开更多
文摘In this paper,numerical analyses of fluid flow around the ship hulls such as Series 60,the Kriso Container Ship(KCS),and catamaran advancing in calm water,are presented.A commercial computational fluid dynamic(CFD)code,STAR-CCM+is used to analyze total resistance,sinkage,trim,wave profile,and wave pattern for a range of Froude numbers.The governing RANS equations of fluid flow are discretized using the finite volume method(FVM),and the pressure-velocity coupling equations are solved using the SIMPLE(semi-implicit method for pressure linked equations)algorithm.Volume of fluid(VOF)method is employed to capture the interface between air and water phases.A fine discretization is performed in between these two phases to get a higher mesh resolution.The fluid-structure interaction(FSI)is modeled with the dynamic fluid-body interaction(DFBI)module within the STAR-CCM+.The numerical results are verified using the results available in the literatures.Grid convergence studies are also carried out to determine the dependence of results on the grid quality.In comparison to previous findings,the current CFD analysis shows the satisfactory results.