Annular centrifugal contactors (ACCs) have many advantages and are recognized as key solvent-extraction equipment for the future reprocessing of spent nuclear fuel (RSNF). To successfully design and operate ACCs for R...Annular centrifugal contactors (ACCs) have many advantages and are recognized as key solvent-extraction equipment for the future reprocessing of spent nuclear fuel (RSNF). To successfully design and operate ACCs for RSNF, it is necessary to understand the hydrodynamic characteristics of the extraction systems in ACCs. The phase ratio (R = Vaq/Vorg, A/O) and liquid holdup volume (V) of the ACC are important hydrodynamic characteristics. In this study, a liquid-fast-separation method was used to systematically investigate the effects of the operational and structural parameters on the V and R (A/O) of a φ20 ACC by using a 30%TBP/kerosene- HNO3 solution system. The results showed that the operational and structural parameters had different effects on the V and R (A/O) of the mixing and separating zones of the ACC, respectively. For the most frequently used structural parameters of the φ20 ACC, when the rotor speed was 3500 r/min, the total flow rate was 2.0 L/h, and the flow ratio (A/O) was 1, the liquid holdup volumes in the mixing zone and rotor were 8.03 and 14.0 mL, respectively, and the phase ratios (A/O) of the mixing zone and separating zone were 0.96 and 1.43, respectively.展开更多
A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehen...A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehensive two-dimensional(2 D) mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO_2 removal efficiency were systematically studied. The simulation results show that CO_2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range.展开更多
A rotating disk contactor(RDC)was designed to perform L-lactic acid fermentation with afilamentous fungi,Rhizopus oryzae,which was immobilized on the surfaces of the rotating discs.Thebioreactor was operated using r...A rotating disk contactor(RDC)was designed to perform L-lactic acid fermentation with afilamentous fungi,Rhizopus oryzae,which was immobilized on the surfaces of the rotating discs.Thebioreactor was operated using repeated-batch method as well as continuous feeding method.Ananionic resin,D354,slightly basic in nature and of high selectivity and capacity was chosen for lacticacid separation.A coupled process of L-lactic acid fermentation and ion-exchange separation wasevaluated experimentally.The results indicated that the pH value of the fermentation broth could bemaintained at about 3-3.5 without any addition of alkali.The conversion ratio of glucose to L-lacticacid was about 0.7 g·g<sup>-1</sup> and the fermentation rate reached as high as 62.5 g·h<sup>-1</sup>·m<sup>-2</sup>.展开更多
Hydrophilic ceramic membranes would be potential candidates for membrane gas absorption if they could be applied to appropriate separation processes.This study highlights a novel concept for the practical implementati...Hydrophilic ceramic membranes would be potential candidates for membrane gas absorption if they could be applied to appropriate separation processes.This study highlights a novel concept for the practical implementation of SO_2 absorption in hydrophilic ceramic membrane that exhibits outstanding thermal and mechanical stabilities.With this aim,we investigated experimentally the performance of SO_2 absorption into aqueous sodium hydroxide (NaOH) solution in a hydrophilic alumina (Al_2O_3) membrane contactor in terms of SO_2 removal efficiency and SO_2 mass transfer flux,and compared the performance with that in a hydrophobic one.A series of experiments were performed at various conditions over a NaOH concentration range of 0–1.0 mol·L^(-1),a liquid flow rate range of 30–180 ml·min^(-1),a gas flow rate range of 120–1000 ml·min^(-1),an inlet SO_2 concentration range of 400–2000μl·L^(-1),and a temperature range of 10–35°C.It was found that the hydrophilic membrane was more competitive when using a NaOH concentration higher than 0.2 mol·L^(-1).Furthermore,it can be inferred that the hydrophilicα-Al_2O_3 membrane exhibited exceptional long-term stability under 480 h continuous operation.展开更多
In this paper, the reliability of contactor relay is studied. There are three main parts about reliability test and analysis. First, in order to analyze reliability level of contact relay, the failure ratio ranks are ...In this paper, the reliability of contactor relay is studied. There are three main parts about reliability test and analysis. First, in order to analyze reliability level of contact relay, the failure ratio ranks are established as index base on the product level. Second, the reliability test method is put forward. The sample plan of reliability compliance test is gained from reliability sample theory. The failure criterion is ensured according to the failure modes of contactor relay. Third, after reliability test experiment, the analysis of failure physics is made and the failure reason is found.展开更多
This review compares the different types of membrane processes for air dehumidification.Three main categories of membrane-based dehumidification are identified–membrane contactors using porous membranes with concentr...This review compares the different types of membrane processes for air dehumidification.Three main categories of membrane-based dehumidification are identified–membrane contactors using porous membranes with concentrated liquid desiccants,separative membranes using dense membrane morphology with a pressure gradient to drive the separation of moisture from air,and adsorptive membranes using nanofibrous membranes which adsorb and capture moisture to realise dehumidification.Drawing upon the importance of dehumidification and humidity control for urban sustainability and energy efficacy,this review critically analyses and recognizes the three unique categories of membrane-based air dehumidification technologies.Essentially,the discussion is broken into three sections-one for each category-discriminating in terms of the driving force,membrane structure and properties,and its performance indicators.Readers will notice that despite having the same objective to dehumidify air,the polymers used amongst each category differs to suit the operating requirements and optimize dehumidification performance.At the end of each section,a performance table or summary of dehumidifying membranes in its class is provided.The final section concludes with a comparative review of the three categories on membrane-based air dehumidification technologies and draw inspiration from parallel research to rationalise the potential and innovative use of promising materials in membrane fabrication for air dehumidification.展开更多
Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters inclu...Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters including rotor speed and continuous and dispersed phase velocities on the volumetric overall mass transfer coefficients are investigated. The results show that the mass transfer performance is strongly dependent on agitation rate and interfacial tension, but only slightly dependent on phase flow rates. In this study, effective diffusivity is used instead of molecular diffusivity in the Grober equation for estimation of dispersed phase overall mass transfer coefficient.The enhancement factor is determined experimentally and there from an empirical expression is derived for prediction of the enhancement factor as a function of Reynolds number. The predicted results compared to the experimental data show that the proposed correlation can efficiently predict the overall mass transfer coefficients in asymmetric rotating disk contactors.展开更多
Like the hollow cathode,discharge instability also occurs during the operation of a plasma contactor.Voltage and current probes were employed to test the change of keeper voltage,keeper current,anode voltage,and anode...Like the hollow cathode,discharge instability also occurs during the operation of a plasma contactor.Voltage and current probes were employed to test the change of keeper voltage,keeper current,anode voltage,and anode current parameters with time under different working conditions.The anode current range corresponding to the discharge instability phenomenon is about 0.4 A to 1.2 A,and the emission characteristic curve in this area appears to bulge wherein the four parameters all produce different degrees of oscillation,the anode current oscillation being the greatest.Its waveform is considered to consist of a small-amplitude,high-frequency triangular wave and a large-amplitude,low-frequency sawtooth wave,and we have explained the shape of the wave.Each parameter shows hundreds of Hz in oscillation frequency and the phases of the four parameters appear to be regular.After fast Fourier transform processing,the frequency and amplitude of the main peak of the anode current oscillation tend to change with changes of the anode current,and there are differences in the trends under different keeper currents and xenon flows.展开更多
Nanosized calcium carbonate particles were prepared with a continuous gas-liquid membrane contactor. The effects of Ca(OH)2 concentration, CO2 pressure and liquid flow velocity on the particles morphology, pressure dr...Nanosized calcium carbonate particles were prepared with a continuous gas-liquid membrane contactor. The effects of Ca(OH)2 concentration, CO2 pressure and liquid flow velocity on the particles morphology, pressure drop and membrane fouling were studied. With rising Ca(OH)2 concentrations, the average size of the particles increased. The effects of Ca(OH)2 concentration and CO2 pressure on particles were not apparent under the experimental conditions. When the Ca(OH)2 concentration and liquid flow velocity were high, or the CO2 pressure was low, the fouling on the membrane external surface at the contactor entrance was serious due to liquid leakage, whereas the fouling was slight at exit. The fouling on the membrane inner-surface at entrance was apparent due to adsorption of raw materials. The membrane can be recovered by washing with dilute hydrochloric acid and reused for at least 6 times without performance deterioration.展开更多
The mass transfer process in a perforated rotating disk contactor(PRDC) using a toluene-acetone-water system was investigated.The volumetric overall mass transfer coefficients are calculated in a PRDC column.Both mass...The mass transfer process in a perforated rotating disk contactor(PRDC) using a toluene-acetone-water system was investigated.The volumetric overall mass transfer coefficients are calculated in a PRDC column.Both mass transfer directions are considered in experiments.The influences of operating variables containing agitation rate,dispersed and continuous phase flow rates and mass transfer in the extraction column are studied.According to obtained results,mass transfer is significantly dependent on agitation rate,while the dispersed and continuous phase flow rates have a minor effect on mass transfer in the extraction column.Furthermore,a novel empirical correlation is developed for prediction of overall continuous phase Sherwood number based on dispersed phase holdup,Reynolds number and mass transfer direction.There has been great agreement between experimental data and predicted values using a proposed correlation for all operating conditions.展开更多
The open turbine rotating disc contactor (OTRDC) has been installed simply by adding three narrow strips to the lower surface of each rotating disc in the rotating disc contactor (RDC), so it can be used for the syste...The open turbine rotating disc contactor (OTRDC) has been installed simply by adding three narrow strips to the lower surface of each rotating disc in the rotating disc contactor (RDC), so it can be used for the system with high solid particle content. Hydrodynamics and axial mixing have been investigated in a 0.152m diameter OTRDC of different compartment height for the system of tap water and quartz particles. A model has been developed to describe the flow of liquid and solid phases. The solid phase holdup can be calculated satisfactorily according to the model equations. Axial mixing data have been treated by the backflow model and the correlations for predicting backflow ratios of liquid and solid phases in OTRDC have been presented.展开更多
1 INTRODUCTIONAs mentioned in our previous paper impinging stream contactor(ISC)is aninnovative device for phase contact operations and has proved itself capable to en-hance transfer processes in heterogeneous systems...1 INTRODUCTIONAs mentioned in our previous paper impinging stream contactor(ISC)is aninnovative device for phase contact operations and has proved itself capable to en-hance transfer processes in heterogeneous systems effectively,and thus is of poten-tial application in many chemical engineering processes,such as drying of solidparticles,solid-solid,liquid-liquid and gas-gas mixing,absorption and desorptionof gases into or from liquids with or without chemical reactions,combustion展开更多
Membrane gas-solvent contactors are a hybrid technology combining solvent absorption with membrane gas separation, which demonstrates potential for CO_2 capture through the ability of the membrane to rigidly control t...Membrane gas-solvent contactors are a hybrid technology combining solvent absorption with membrane gas separation, which demonstrates potential for CO_2 capture through the ability of the membrane to rigidly control the mass transfer area. Membrane contactors have been successfully demonstrated for CO_2 absorption, and there is strong research interest in using membrane contactors for the complimentary CO_2 desorption process to regenerate the solvent. However, understanding and modelling the various stages of mass transfer in the desorption process is less well-known, given the existing mass transfer correlations had been developed from absorption experiments. Hence, mass transfer correlations for membrane contactors are reviewed here, and their appropriateness for desorption analysed. This is achieved through simulating CO_2 desorption through a membrane contactor from loaded 30 wt% monoethanolamine solvent to enable comparison of the correlations. It was found that the most cited correlations by Yang and Cussler were valid for shell side parallel flow, while that of Kreith and Black was viable for shell side cross flow. A limitation of all of these correlations is that they assume single phase flow on both sides of the membrane; however, the high temperature of CO_2 desorption can lead to partial solvent vaporisation and hence two phases present on one side of the membrane contactor during desorption. A mass transfer correlation is established here for two phase parallel flow on the shell side of a membrane contactor, based on experimental results for three composite and one asymmetric hollow fibre membrane contactors stripping CO_2 from loaded MEA at 105–108 °C. This correlation is comparable to that reported in the literature for mass transfer in other two phase systems, but differs from the standard format for membrane contactors in terms of the exponent on the dimensionless Schmidt and Reynolds numbers.展开更多
A laboratory scale study was conducted to assess the feasibility of the new coupling of rotating biological contactor (RBC) plus porous biomass support system (PBSS) using polyurethane foam as porous support media to ...A laboratory scale study was conducted to assess the feasibility of the new coupling of rotating biological contactor (RBC) plus porous biomass support system (PBSS) using polyurethane foam as porous support media to biodegrade petroleum refinery wastewater. Polyurethane foam was attached on disks of two four-stage laboratory scale cascade connected RBC units.The two RBC units were operated simultaneously at different but constant, flowrates giving hydraulic loading rates of 0.01, 0.02, 0.03, 0.04 m3/m2/d in two runs keeping the same rotational speed 10 r/min throughout. Organic loading was a less controllable factor in this study.For all of the hydraulic loadings, it was found that the removal efficiency of total chemical oxygen demand (TCOD) and oil were above 80 percent. Ammonia nitrogen and phenol removal were above 90 and 80 percent respectively. The maximum biomass concentration within polyurethane foam was about 30 g/m2 in the first stage for 0.03 m3/m2/d hydraulic loading.The results show that this new technology can be applied effectively for practical purposes with moderate hydraulic loading rates.展开更多
This paper aims to design a MCU-based smart contactor system, which will realize functions of real time surveillance of contactors’ work status and data exchange with host computer, thus instantly reflect different s...This paper aims to design a MCU-based smart contactor system, which will realize functions of real time surveillance of contactors’ work status and data exchange with host computer, thus instantly reflect different status of the system. In case of abnormal status such as over-current or under-voltage, the contactor will be able to automatically cut off power supply to protect electrical load and the circuit. Through ARINC485 bus, system computer will collect and record contactor parameters, including contact voltage, contact current, supply frequency, contact temperature and contact status to provide critical data to the examination and repair of contactors.展开更多
Membrane contactor is regarded as a promising method for reaction and process intensification. The feasibility of formaldehyde carbonylation to synthesize glycolic acid using polytetrafluoroethylene(PTFE)membrane cont...Membrane contactor is regarded as a promising method for reaction and process intensification. The feasibility of formaldehyde carbonylation to synthesize glycolic acid using polytetrafluoroethylene(PTFE)membrane contactor has been proved in our previous study. In this paper, the effect of membrane microstructure on process performance was further investigated. Three porous PTFE hollow fibers with different pore sizes and one polydimethylsiloxane(PDMS)/PTFE composite membrane with dense layer were fabricated for comparison. The physical and chemical properties of four membranes, including chemical composition, morphology, contact angle, liquid entry pressure, thermodynamic analysis and gas permeability, were systemically characterized. Experiments of formaldehyde carbonylation under different reaction conditions were conducted. The results indicated that the yield of glycolic acid increased with decreasing pore size for porous membranes, which was due to the improvement of wetting behavior. The dense layer of PDMS in composite hollow fiber could effectively prevent the solvent from entering membrane pores, thus the membrane exhibited the best performance. At reaction temperature of 120℃ and operation pressure of 3.0 MPa, the yield of glycolic acid was always higher than 90% as the mass ratio of trioxane and phosphotungstic acid increased from 0.2:1 to 0.8:1. The highest turnover frequency was up to 26.37 mol·g^(-1)·h^(-1). This study provided a reference for the understanding and optimization of membrane contactors for the synthesis of glycolic acid using solvent with low surface tension.展开更多
Wastewater containing high concentrations of ammonia can be harmful to aquatic life and degrade the water quality. Wastewater containing ammonia is usually removed by conventional methods such as aeration in towers, b...Wastewater containing high concentrations of ammonia can be harmful to aquatic life and degrade the water quality. Wastewater containing ammonia is usually removed by conventional methods such as aeration in towers, biological treatment and adsorption of the ammonium ion to the zeolite surface. However, these methods are less effective and relatively expensive. Therefore there is a need for alternative technologies that can improve the efficiency of ammonia removal from wastewater. This study aims to obtain the process of ammonia removal through a combination of absorption in the membrane contactor and the advance oxidation process in the hybrid plasma-ozone reactor. Wastewater containing ammonia used in the study was a synthetic wastewater with a concentration of about 800 ppm. In the experiment, the wastewater fi'om the reservoir was firstly passed into the membrane contactor on the shell side, and then mixed with ozone from the ozonator befbre entering the plasma reactor, and finally was circulated back to the reservoir. Meanwhile, the absorbent solution was sent to the lumen fiber in membrane contactor. Experimental results showed that the ammonia removal efficiency increases with increasing in circulation rate and temperature of the wastewater. The highest efficiency of ammonia removal obtained from the experimental results was 77%.展开更多
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT13026)the National 863 Program for Nuclear Fuel Cycling and Nuclear Safety Technology Project(No.2009AA050703)
文摘Annular centrifugal contactors (ACCs) have many advantages and are recognized as key solvent-extraction equipment for the future reprocessing of spent nuclear fuel (RSNF). To successfully design and operate ACCs for RSNF, it is necessary to understand the hydrodynamic characteristics of the extraction systems in ACCs. The phase ratio (R = Vaq/Vorg, A/O) and liquid holdup volume (V) of the ACC are important hydrodynamic characteristics. In this study, a liquid-fast-separation method was used to systematically investigate the effects of the operational and structural parameters on the V and R (A/O) of a φ20 ACC by using a 30%TBP/kerosene- HNO3 solution system. The results showed that the operational and structural parameters had different effects on the V and R (A/O) of the mixing and separating zones of the ACC, respectively. For the most frequently used structural parameters of the φ20 ACC, when the rotor speed was 3500 r/min, the total flow rate was 2.0 L/h, and the flow ratio (A/O) was 1, the liquid holdup volumes in the mixing zone and rotor were 8.03 and 14.0 mL, respectively, and the phase ratios (A/O) of the mixing zone and separating zone were 0.96 and 1.43, respectively.
基金partly supported by the Research Council of Norway through CLIMIT program (MCIL-CO_2 project, 215732)
文摘A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehensive two-dimensional(2 D) mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO_2 removal efficiency were systematically studied. The simulation results show that CO_2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range.
基金Supported by the National Natural Science Foundation of China.
文摘A rotating disk contactor(RDC)was designed to perform L-lactic acid fermentation with afilamentous fungi,Rhizopus oryzae,which was immobilized on the surfaces of the rotating discs.Thebioreactor was operated using repeated-batch method as well as continuous feeding method.Ananionic resin,D354,slightly basic in nature and of high selectivity and capacity was chosen for lacticacid separation.A coupled process of L-lactic acid fermentation and ion-exchange separation wasevaluated experimentally.The results indicated that the pH value of the fermentation broth could bemaintained at about 3-3.5 without any addition of alkali.The conversion ratio of glucose to L-lacticacid was about 0.7 g·g<sup>-1</sup> and the fermentation rate reached as high as 62.5 g·h<sup>-1</sup>·m<sup>-2</sup>.
基金Supported by the National Key R&D Plan(2016YFC0205700)the National Natural Science Foundation of China(91534108,21506093,21706114)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20150947,BK20160979)the National High Technology Research and Development Program of China(2012AA03A606)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Hydrophilic ceramic membranes would be potential candidates for membrane gas absorption if they could be applied to appropriate separation processes.This study highlights a novel concept for the practical implementation of SO_2 absorption in hydrophilic ceramic membrane that exhibits outstanding thermal and mechanical stabilities.With this aim,we investigated experimentally the performance of SO_2 absorption into aqueous sodium hydroxide (NaOH) solution in a hydrophilic alumina (Al_2O_3) membrane contactor in terms of SO_2 removal efficiency and SO_2 mass transfer flux,and compared the performance with that in a hydrophobic one.A series of experiments were performed at various conditions over a NaOH concentration range of 0–1.0 mol·L^(-1),a liquid flow rate range of 30–180 ml·min^(-1),a gas flow rate range of 120–1000 ml·min^(-1),an inlet SO_2 concentration range of 400–2000μl·L^(-1),and a temperature range of 10–35°C.It was found that the hydrophilic membrane was more competitive when using a NaOH concentration higher than 0.2 mol·L^(-1).Furthermore,it can be inferred that the hydrophilicα-Al_2O_3 membrane exhibited exceptional long-term stability under 480 h continuous operation.
文摘In this paper, the reliability of contactor relay is studied. There are three main parts about reliability test and analysis. First, in order to analyze reliability level of contact relay, the failure ratio ranks are established as index base on the product level. Second, the reliability test method is put forward. The sample plan of reliability compliance test is gained from reliability sample theory. The failure criterion is ensured according to the failure modes of contactor relay. Third, after reliability test experiment, the analysis of failure physics is made and the failure reason is found.
基金supported by Singapore Membrane Technology Centre(SMTC),Interdisciplinary Graduate Programme,Nanyang Environment and Water Research institute and Nanyang Technological university for this research.
文摘This review compares the different types of membrane processes for air dehumidification.Three main categories of membrane-based dehumidification are identified–membrane contactors using porous membranes with concentrated liquid desiccants,separative membranes using dense membrane morphology with a pressure gradient to drive the separation of moisture from air,and adsorptive membranes using nanofibrous membranes which adsorb and capture moisture to realise dehumidification.Drawing upon the importance of dehumidification and humidity control for urban sustainability and energy efficacy,this review critically analyses and recognizes the three unique categories of membrane-based air dehumidification technologies.Essentially,the discussion is broken into three sections-one for each category-discriminating in terms of the driving force,membrane structure and properties,and its performance indicators.Readers will notice that despite having the same objective to dehumidify air,the polymers used amongst each category differs to suit the operating requirements and optimize dehumidification performance.At the end of each section,a performance table or summary of dehumidifying membranes in its class is provided.The final section concludes with a comparative review of the three categories on membrane-based air dehumidification technologies and draw inspiration from parallel research to rationalise the potential and innovative use of promising materials in membrane fabrication for air dehumidification.
文摘Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters including rotor speed and continuous and dispersed phase velocities on the volumetric overall mass transfer coefficients are investigated. The results show that the mass transfer performance is strongly dependent on agitation rate and interfacial tension, but only slightly dependent on phase flow rates. In this study, effective diffusivity is used instead of molecular diffusivity in the Grober equation for estimation of dispersed phase overall mass transfer coefficient.The enhancement factor is determined experimentally and there from an empirical expression is derived for prediction of the enhancement factor as a function of Reynolds number. The predicted results compared to the experimental data show that the proposed correlation can efficiently predict the overall mass transfer coefficients in asymmetric rotating disk contactors.
基金financial support from National Natural Science Foundation of China(Nos.11402025,11475019,and 11702123)National Key Laboratory of Science and Technology on Vacuum Technology and Physics(No.ZWK1608)Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2018-03)。
文摘Like the hollow cathode,discharge instability also occurs during the operation of a plasma contactor.Voltage and current probes were employed to test the change of keeper voltage,keeper current,anode voltage,and anode current parameters with time under different working conditions.The anode current range corresponding to the discharge instability phenomenon is about 0.4 A to 1.2 A,and the emission characteristic curve in this area appears to bulge wherein the four parameters all produce different degrees of oscillation,the anode current oscillation being the greatest.Its waveform is considered to consist of a small-amplitude,high-frequency triangular wave and a large-amplitude,low-frequency sawtooth wave,and we have explained the shape of the wave.Each parameter shows hundreds of Hz in oscillation frequency and the phases of the four parameters appear to be regular.After fast Fourier transform processing,the frequency and amplitude of the main peak of the anode current oscillation tend to change with changes of the anode current,and there are differences in the trends under different keeper currents and xenon flows.
基金Supported by the National Natural Science Foundation of China (20676016, 21076024).
文摘Nanosized calcium carbonate particles were prepared with a continuous gas-liquid membrane contactor. The effects of Ca(OH)2 concentration, CO2 pressure and liquid flow velocity on the particles morphology, pressure drop and membrane fouling were studied. With rising Ca(OH)2 concentrations, the average size of the particles increased. The effects of Ca(OH)2 concentration and CO2 pressure on particles were not apparent under the experimental conditions. When the Ca(OH)2 concentration and liquid flow velocity were high, or the CO2 pressure was low, the fouling on the membrane external surface at the contactor entrance was serious due to liquid leakage, whereas the fouling was slight at exit. The fouling on the membrane inner-surface at entrance was apparent due to adsorption of raw materials. The membrane can be recovered by washing with dilute hydrochloric acid and reused for at least 6 times without performance deterioration.
文摘The mass transfer process in a perforated rotating disk contactor(PRDC) using a toluene-acetone-water system was investigated.The volumetric overall mass transfer coefficients are calculated in a PRDC column.Both mass transfer directions are considered in experiments.The influences of operating variables containing agitation rate,dispersed and continuous phase flow rates and mass transfer in the extraction column are studied.According to obtained results,mass transfer is significantly dependent on agitation rate,while the dispersed and continuous phase flow rates have a minor effect on mass transfer in the extraction column.Furthermore,a novel empirical correlation is developed for prediction of overall continuous phase Sherwood number based on dispersed phase holdup,Reynolds number and mass transfer direction.There has been great agreement between experimental data and predicted values using a proposed correlation for all operating conditions.
文摘The open turbine rotating disc contactor (OTRDC) has been installed simply by adding three narrow strips to the lower surface of each rotating disc in the rotating disc contactor (RDC), so it can be used for the system with high solid particle content. Hydrodynamics and axial mixing have been investigated in a 0.152m diameter OTRDC of different compartment height for the system of tap water and quartz particles. A model has been developed to describe the flow of liquid and solid phases. The solid phase holdup can be calculated satisfactorily according to the model equations. Axial mixing data have been treated by the backflow model and the correlations for predicting backflow ratios of liquid and solid phases in OTRDC have been presented.
基金Supported by the National Natural Science Foundation of China and Natural Science Foundation of Zhejiang Province.
文摘1 INTRODUCTIONAs mentioned in our previous paper impinging stream contactor(ISC)is aninnovative device for phase contact operations and has proved itself capable to en-hance transfer processes in heterogeneous systems effectively,and thus is of poten-tial application in many chemical engineering processes,such as drying of solidparticles,solid-solid,liquid-liquid and gas-gas mixing,absorption and desorptionof gases into or from liquids with or without chemical reactions,combustion
文摘Membrane gas-solvent contactors are a hybrid technology combining solvent absorption with membrane gas separation, which demonstrates potential for CO_2 capture through the ability of the membrane to rigidly control the mass transfer area. Membrane contactors have been successfully demonstrated for CO_2 absorption, and there is strong research interest in using membrane contactors for the complimentary CO_2 desorption process to regenerate the solvent. However, understanding and modelling the various stages of mass transfer in the desorption process is less well-known, given the existing mass transfer correlations had been developed from absorption experiments. Hence, mass transfer correlations for membrane contactors are reviewed here, and their appropriateness for desorption analysed. This is achieved through simulating CO_2 desorption through a membrane contactor from loaded 30 wt% monoethanolamine solvent to enable comparison of the correlations. It was found that the most cited correlations by Yang and Cussler were valid for shell side parallel flow, while that of Kreith and Black was viable for shell side cross flow. A limitation of all of these correlations is that they assume single phase flow on both sides of the membrane; however, the high temperature of CO_2 desorption can lead to partial solvent vaporisation and hence two phases present on one side of the membrane contactor during desorption. A mass transfer correlation is established here for two phase parallel flow on the shell side of a membrane contactor, based on experimental results for three composite and one asymmetric hollow fibre membrane contactors stripping CO_2 from loaded MEA at 105–108 °C. This correlation is comparable to that reported in the literature for mass transfer in other two phase systems, but differs from the standard format for membrane contactors in terms of the exponent on the dimensionless Schmidt and Reynolds numbers.
文摘A laboratory scale study was conducted to assess the feasibility of the new coupling of rotating biological contactor (RBC) plus porous biomass support system (PBSS) using polyurethane foam as porous support media to biodegrade petroleum refinery wastewater. Polyurethane foam was attached on disks of two four-stage laboratory scale cascade connected RBC units.The two RBC units were operated simultaneously at different but constant, flowrates giving hydraulic loading rates of 0.01, 0.02, 0.03, 0.04 m3/m2/d in two runs keeping the same rotational speed 10 r/min throughout. Organic loading was a less controllable factor in this study.For all of the hydraulic loadings, it was found that the removal efficiency of total chemical oxygen demand (TCOD) and oil were above 80 percent. Ammonia nitrogen and phenol removal were above 90 and 80 percent respectively. The maximum biomass concentration within polyurethane foam was about 30 g/m2 in the first stage for 0.03 m3/m2/d hydraulic loading.The results show that this new technology can be applied effectively for practical purposes with moderate hydraulic loading rates.
文摘This paper aims to design a MCU-based smart contactor system, which will realize functions of real time surveillance of contactors’ work status and data exchange with host computer, thus instantly reflect different status of the system. In case of abnormal status such as over-current or under-voltage, the contactor will be able to automatically cut off power supply to protect electrical load and the circuit. Through ARINC485 bus, system computer will collect and record contactor parameters, including contact voltage, contact current, supply frequency, contact temperature and contact status to provide critical data to the examination and repair of contactors.
基金the financial support from Dalian Institute of Chemical Physics (DMTO201604)Focus Area Innovation Team Support Plan of Dalian (2021RT03)+1 种基金National Natural Science Foundation of China (21878284)Regional Development Young Scholars of the Chinese Academy of Sciences。
文摘Membrane contactor is regarded as a promising method for reaction and process intensification. The feasibility of formaldehyde carbonylation to synthesize glycolic acid using polytetrafluoroethylene(PTFE)membrane contactor has been proved in our previous study. In this paper, the effect of membrane microstructure on process performance was further investigated. Three porous PTFE hollow fibers with different pore sizes and one polydimethylsiloxane(PDMS)/PTFE composite membrane with dense layer were fabricated for comparison. The physical and chemical properties of four membranes, including chemical composition, morphology, contact angle, liquid entry pressure, thermodynamic analysis and gas permeability, were systemically characterized. Experiments of formaldehyde carbonylation under different reaction conditions were conducted. The results indicated that the yield of glycolic acid increased with decreasing pore size for porous membranes, which was due to the improvement of wetting behavior. The dense layer of PDMS in composite hollow fiber could effectively prevent the solvent from entering membrane pores, thus the membrane exhibited the best performance. At reaction temperature of 120℃ and operation pressure of 3.0 MPa, the yield of glycolic acid was always higher than 90% as the mass ratio of trioxane and phosphotungstic acid increased from 0.2:1 to 0.8:1. The highest turnover frequency was up to 26.37 mol·g^(-1)·h^(-1). This study provided a reference for the understanding and optimization of membrane contactors for the synthesis of glycolic acid using solvent with low surface tension.
文摘Wastewater containing high concentrations of ammonia can be harmful to aquatic life and degrade the water quality. Wastewater containing ammonia is usually removed by conventional methods such as aeration in towers, biological treatment and adsorption of the ammonium ion to the zeolite surface. However, these methods are less effective and relatively expensive. Therefore there is a need for alternative technologies that can improve the efficiency of ammonia removal from wastewater. This study aims to obtain the process of ammonia removal through a combination of absorption in the membrane contactor and the advance oxidation process in the hybrid plasma-ozone reactor. Wastewater containing ammonia used in the study was a synthetic wastewater with a concentration of about 800 ppm. In the experiment, the wastewater fi'om the reservoir was firstly passed into the membrane contactor on the shell side, and then mixed with ozone from the ozonator befbre entering the plasma reactor, and finally was circulated back to the reservoir. Meanwhile, the absorbent solution was sent to the lumen fiber in membrane contactor. Experimental results showed that the ammonia removal efficiency increases with increasing in circulation rate and temperature of the wastewater. The highest efficiency of ammonia removal obtained from the experimental results was 77%.