In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr...In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
Amorphous 2,4,6-trissubstituted pyridines containing three peripheral carbazole or two triphenylamine and one carbazole moieties, respectively, have been synthesized and characterized. The properties of the compounds ...Amorphous 2,4,6-trissubstituted pyridines containing three peripheral carbazole or two triphenylamine and one carbazole moieties, respectively, have been synthesized and characterized. The properties of the compounds are investigated by UV-vis absorption, photoluminescence spectroscopy, thermal analysis as well as cyclic voltammetry. The results show that the compounds have high thermal stability, emit blue light. Also, the compounds possess the HOMO and LUMO energy levels comparable to those of NPB. The effects of different substituents on the electronic properties of the materials have been discussed.展开更多
Heteroarm star-shaped polymers were synthesized by conventional free radical polymerization in two steps by the use of polyfunctional chain transfer agent.In the first step,free radical polymerization of methyl methac...Heteroarm star-shaped polymers were synthesized by conventional free radical polymerization in two steps by the use of polyfunctional chain transfer agent.In the first step,free radical polymerization of methyl methacrylate was carried out in the presence of a polyfunctional chain transfer agent,pentaerythritol tetrakis(3-mercaptopropinate).At appropriate monomer conversions,two-arm PMMA having two residual thiol groups at the chain center or three-arm PMMA having one residual thiol group at the core were o...展开更多
A fiber-based, star-shaped joint time and frequency dissemination scheme is demonstrated. By working in cooperation with the existing commercial telecommunication network. Our scheme enables the frequency, time, and d...A fiber-based, star-shaped joint time and frequency dissemination scheme is demonstrated. By working in cooperation with the existing commercial telecommunication network. Our scheme enables the frequency, time, and digital data networks to be integrated together and could represent an ideal option of interconnection among scientific institutions.The compensation functions of the time and frequency transfer scheme are set at the client nodes. The complexity of the central node is thus reduced, and future expansion by the addition of further branches will be accomplished more easily.During a performance test in which the ambient temperature fluctuation is 30℃/day, timing signal dissemination stability is achieved to be approximately ±50 ps along 25-km-long fiber spools. After calibration, a timing signal synchronization accuracy of 100 ps is also realized. The proposed scheme offers an option of the construction of large-scale fiber-based frequency and time transfer networks.展开更多
Both four-ann star-shaped poly(ε-caprolactone) (4sPCL) and two-ann linear PCL (2LPCL) were synthesized and their inclusion complexation with α-cyclodextrin (α-CD) were studied. The inclusion complexes (ICs...Both four-ann star-shaped poly(ε-caprolactone) (4sPCL) and two-ann linear PCL (2LPCL) were synthesized and their inclusion complexation with α-cyclodextrin (α-CD) were studied. The inclusion complexes (ICs) formed between the PCL polymers and α-CD were characterized by ^1H-NMR, DSC, TGA, WAXD, and FT-1R, respectively. Both branch ann number and molecular weight of the PCL polymers have apparent effect on the stoichiometry (CL:CD, mol:mol) of these ICs. All these analytical results indicate that the branch arms of the PCL polymers are incorporated into the hydrophobic α-CD cavities and their original crystalline properties are completely suppressed. Moreover, the inclusion complexation between two-ann linear or four-ann star-shaped PCL polymers and α-CD not only enhances the thermal stability of the guest PCL polymers but also improves that of α-CD.展开更多
In this paper, we give some characteristic properties of star-shaped sets which include a subset of a convex metric space. Using the characteristic properties, we discuss the existence problems of fixed points of none...In this paper, we give some characteristic properties of star-shaped sets which include a subset of a convex metric space. Using the characteristic properties, we discuss the existence problems of fixed points of nonexpansive type mappings on star-shaped subsets of convex metric spaces, which generalize the recent results obtained by Ding Xie-ping, Beg and Azam. Finally, we give an example which shows that our generalizations are essential.展开更多
Based on the isomorphism between the space of star-shaped sets and the space of continuous positively homogeneous real-valued functions, the star-shaped differential of a directionally differentiable function is defin...Based on the isomorphism between the space of star-shaped sets and the space of continuous positively homogeneous real-valued functions, the star-shaped differential of a directionally differentiable function is defined. Formulas for star-shaped differential of a pointwise maximum and a pointwise minimum of a finite number of directionally differentiable functions, and a composite of two directionaUy differentiable functions are derived. Furthermore, the mean-value theorem for a directionaUy differentiable function is demonstrated.展开更多
Well-defined star-shaped poly(L-lactide)with six arms(sPLLA)was synthesized via the ring-opening polymerization of L-lactide using dipentaerythritol as initiator and stannous octoate as catalyst in bulk at 125~C.The e...Well-defined star-shaped poly(L-lactide)with six arms(sPLLA)was synthesized via the ring-opening polymerization of L-lactide using dipentaerythritol as initiator and stannous octoate as catalyst in bulk at 125~C.The effects of molar ratios of both monomer to initiator and monomer to catalyst on the molecular weights of as-synthesized sPLLA polymers were in detail investigated.The molecular weights of sPLLA polymers linearly increased with the molar ratio of monomer to initiator,and the molecular weight dist...展开更多
TPGS approved by FDA can be used as a P-gp inhibitor to effectively reverse multi-drug resistance(MDR)and as an anticancer agent for synergistic antitumor effects.However,the comparatively high critical micelle concen...TPGS approved by FDA can be used as a P-gp inhibitor to effectively reverse multi-drug resistance(MDR)and as an anticancer agent for synergistic antitumor effects.However,the comparatively high critical micelle concentration(CMC),low drug loading(DL)and poor tumor target limit its further clinical application.To overcome these drawbacks,the pH-sensitive star-shaped TPGS copolymers were successfully constructed via using pentaerythritol as the initial materials,ortho esters as the pH-triggered linkages and TPGS active-ester as the terminated MDR material.The amphiphilic star-shaped TPGS copolymers could self-assemble into free and doxorubicin(DOX)-loaded micelles at neutral aqueous solutions.The micelles exhibited the lower CMC(8.2×10^(−5) mg/ml),higher DL(10.8%)and long-term storage and circulation stability,and showed enhanced cellular uptake,apoptosis,cytotoxicity,and growth inhibition for in vitro MCF-7/ADR and/or MCF-7/ADR multicellular spheroids and in vivo MCF-7/ADR tumors via efficiently targeted drug release at tumoral intracellular pH(5.0),MDR reversal of TPGS,and synergistic effect of DOX and TPGS.Therefore,the pH-sensitive micelles self-assembled from star-shaped TPGS copolymers with ortho ester linkages are potentially useful to clinically transform for enhanced MDR cancer treatment.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
The purposes of this research were to synthesize and characterize star-shaped poly lactide-co-glycolide-β-cyclo-dextrin (PLGA-β-CD) copolymer by reacting L-lactide, glycolide and β-cyclodextrin in the presence of s...The purposes of this research were to synthesize and characterize star-shaped poly lactide-co-glycolide-β-cyclo-dextrin (PLGA-β-CD) copolymer by reacting L-lactide, glycolide and β-cyclodextrin in the presence of stannous octoate as a catalyst. The structure of PLGA-β-CD copolymer was confirmed with 1H-NMR, 13C-NMR and FT-IR spectra. Albumin as a model peptide drug was encapsulated within nanoparticles made of PLGA-β-CD with a modified double emulsion method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) photomicrographs showed that the nanoparticles have the mean diameter within the range of 80 - 210 nm. Also they were almost spherical in shape. Effects of the experimental parameters, such as copolymer composition, copolymer concentration, and reaction temperature, on particular size and encapsulation efficiency were investigated.展开更多
White organic light-emitting diodes (WOLEDs) with a structure of indium-tin-oxide (ITO)/N,N'-bis- (1-naphthyl)-N,N'-diphenyl- (1, 1'-biphenyl)-4,4'-diamine (NPB)/1,2,3,4,5,6-hexakis(9,9-diethyl-9H-fluor...White organic light-emitting diodes (WOLEDs) with a structure of indium-tin-oxide (ITO)/N,N'-bis- (1-naphthyl)-N,N'-diphenyl- (1, 1'-biphenyl)-4,4'-diamine (NPB)/1,2,3,4,5,6-hexakis(9,9-diethyl-9H-fluoren-2- yl)benzene (HKEthFLYPh)/5,6,11,12-tetraphenylnaphtacene (rubrene)/tris(8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag were fabricated by vacuum deposition method, in which a novel star-shaped hexafluorenyl- benzene HKEthFLYPh was used as an energy transfer layer, and an ultrathin layer of rubrene was inserted between HKEthFLYPh and Alq3 layers as a yellow light-emitting layer instead of using a time-consuming doping process. A fairly pure WOLED with Commissions Internationale De L'Eclairage (CIE) coordinates of (0.32, 0.33) was obtained when the thickness of rubrene was 0.3 nm, and the spectrum was insensitive to the applied voltage. The device yielded a maximum luminance of 4816 cd/m2 at 18 V.展开更多
After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,M...After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,Magnesium-Zinc-Gadolinium(ZG21)wires are developed to bunch the tendon graft for matching the bone tunnel during transplantation.Microstructure,tensile strength,degradation,and cytotoxicity of ZG21 wire are evaluated.The rabbit model is used for assessing the biological effects of ZG21 wire by Micro-CT,histology,and mechanical test.The SEM/EDS,immunochemistry,and in vitro assessments are performed to investigate the underlying mechanism.Material tests demonstrate the high formability of ZG21 wire as surgical suture.Micro-CT shows ZG21 wire degradation accelerates tunnel bone formation,and histologically with earlier and more fibrocartilage regeneration at the healing interface.The mechanical test shows higher ultimate load in the ZG21 group.The SEM/EDS presents ZG21 wire degradation triggered calcium phosphate(Ca-P)deposition.IHC results demonstrate upregulation of Wnt3a,BMP2,and VEGF at the early phase and TGFβ3 and Type II collagen at the late phase of healing.In vitro tests also confirmed the Ca-P in the metal extract could elevate the expression of Wnt3a,βcatenin,ocn and opn to stimulate osteogenesis.Ex vivo tests of clinical samples indicated suturing with ZG21 wire did not weaken the ultimate loading of human tendon tissue.In conclusion,the ZG21 wire is feasible for tendon graft bunching.Its degradation products accelerated intra-tunnel endochondral ossification at the early healing stage and therefore enhanced bone-tendon interface healing in ACL reconstruction.展开更多
Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dim...Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection.展开更多
A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micr...A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.展开更多
A biodegradable Mg−2Zn−0.4Sc−0.2Zr(ZK20−0.4Sc)alloy wire with a diameter of 0.5 mm was prepared by a combination of hot extrusion and cold-drawing.The average grain size of ZK20−0.4Sc alloy wire on the longitudinal se...A biodegradable Mg−2Zn−0.4Sc−0.2Zr(ZK20−0.4Sc)alloy wire with a diameter of 0.5 mm was prepared by a combination of hot extrusion and cold-drawing.The average grain size of ZK20−0.4Sc alloy wire on the longitudinal section along the drawing direction is approximately 7.3μm.The texture results show relatively strong<1020>and weak<1010>fiber texture components parallel to the drawing direction.The ZK20−0.4Sc alloy wire exhibits better mechanical properties with the tensile strength,yield strength and elongate of(329±2)MPa,(287±2)MPa and(14.2±0.5)%,respectively.The better mechanical properties are mainly attributed to the grain refinement strengthening,dislocation strengthening and precipitation strengthening.With the immersion time increasing to 14 d,the corrosion type transfers from filament corrosion and pitting corrosion to severe localized corrosion.展开更多
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en...Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).展开更多
基金National Natural Science Foundation of China(Grant Nos.51821003,52175524,61704158)the Natural Science Foundation of Shanxi Province(Grant No.202103021224206)Shanxi"1331 Project"Key Subjects Construction to provide fund for conducting experiments。
文摘In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
文摘Amorphous 2,4,6-trissubstituted pyridines containing three peripheral carbazole or two triphenylamine and one carbazole moieties, respectively, have been synthesized and characterized. The properties of the compounds are investigated by UV-vis absorption, photoluminescence spectroscopy, thermal analysis as well as cyclic voltammetry. The results show that the compounds have high thermal stability, emit blue light. Also, the compounds possess the HOMO and LUMO energy levels comparable to those of NPB. The effects of different substituents on the electronic properties of the materials have been discussed.
文摘Heteroarm star-shaped polymers were synthesized by conventional free radical polymerization in two steps by the use of polyfunctional chain transfer agent.In the first step,free radical polymerization of methyl methacrylate was carried out in the presence of a polyfunctional chain transfer agent,pentaerythritol tetrakis(3-mercaptopropinate).At appropriate monomer conversions,two-arm PMMA having two residual thiol groups at the chain center or three-arm PMMA having one residual thiol group at the core were o...
基金supported by the National Key Scientific Instrument and Equipment Development Project,China(Grant No.2013YQ09094303)the Program of International Science and Technology Cooperation,China(Grant No.2016YFE0100200)
文摘A fiber-based, star-shaped joint time and frequency dissemination scheme is demonstrated. By working in cooperation with the existing commercial telecommunication network. Our scheme enables the frequency, time, and digital data networks to be integrated together and could represent an ideal option of interconnection among scientific institutions.The compensation functions of the time and frequency transfer scheme are set at the client nodes. The complexity of the central node is thus reduced, and future expansion by the addition of further branches will be accomplished more easily.During a performance test in which the ambient temperature fluctuation is 30℃/day, timing signal dissemination stability is achieved to be approximately ±50 ps along 25-km-long fiber spools. After calibration, a timing signal synchronization accuracy of 100 ps is also realized. The proposed scheme offers an option of the construction of large-scale fiber-based frequency and time transfer networks.
基金This work was supported by the National Natural Science Foundation of China (No. 20404007).
文摘Both four-ann star-shaped poly(ε-caprolactone) (4sPCL) and two-ann linear PCL (2LPCL) were synthesized and their inclusion complexation with α-cyclodextrin (α-CD) were studied. The inclusion complexes (ICs) formed between the PCL polymers and α-CD were characterized by ^1H-NMR, DSC, TGA, WAXD, and FT-1R, respectively. Both branch ann number and molecular weight of the PCL polymers have apparent effect on the stoichiometry (CL:CD, mol:mol) of these ICs. All these analytical results indicate that the branch arms of the PCL polymers are incorporated into the hydrophobic α-CD cavities and their original crystalline properties are completely suppressed. Moreover, the inclusion complexation between two-ann linear or four-ann star-shaped PCL polymers and α-CD not only enhances the thermal stability of the guest PCL polymers but also improves that of α-CD.
文摘In this paper, we give some characteristic properties of star-shaped sets which include a subset of a convex metric space. Using the characteristic properties, we discuss the existence problems of fixed points of nonexpansive type mappings on star-shaped subsets of convex metric spaces, which generalize the recent results obtained by Ding Xie-ping, Beg and Azam. Finally, we give an example which shows that our generalizations are essential.
文摘Based on the isomorphism between the space of star-shaped sets and the space of continuous positively homogeneous real-valued functions, the star-shaped differential of a directionally differentiable function is defined. Formulas for star-shaped differential of a pointwise maximum and a pointwise minimum of a finite number of directionally differentiable functions, and a composite of two directionaUy differentiable functions are derived. Furthermore, the mean-value theorem for a directionaUy differentiable function is demonstrated.
基金This work was financially supported by the National Natural Science Foundation of China(No.20404007)and many thanks for the assistance of Instrumental Analysis Center of SJTU.
文摘Well-defined star-shaped poly(L-lactide)with six arms(sPLLA)was synthesized via the ring-opening polymerization of L-lactide using dipentaerythritol as initiator and stannous octoate as catalyst in bulk at 125~C.The effects of molar ratios of both monomer to initiator and monomer to catalyst on the molecular weights of as-synthesized sPLLA polymers were in detail investigated.The molecular weights of sPLLA polymers linearly increased with the molar ratio of monomer to initiator,and the molecular weight dist...
基金This work is financially supported by the National Natural Science Foundation of China(No.51803001)the Research Foundation of Education Department of Anhui Province of China(No.KJ2018ZD003 and KJ2018A0006)the Academic and Technology Introduction Project of Anhui University(AU02303203).
文摘TPGS approved by FDA can be used as a P-gp inhibitor to effectively reverse multi-drug resistance(MDR)and as an anticancer agent for synergistic antitumor effects.However,the comparatively high critical micelle concentration(CMC),low drug loading(DL)and poor tumor target limit its further clinical application.To overcome these drawbacks,the pH-sensitive star-shaped TPGS copolymers were successfully constructed via using pentaerythritol as the initial materials,ortho esters as the pH-triggered linkages and TPGS active-ester as the terminated MDR material.The amphiphilic star-shaped TPGS copolymers could self-assemble into free and doxorubicin(DOX)-loaded micelles at neutral aqueous solutions.The micelles exhibited the lower CMC(8.2×10^(−5) mg/ml),higher DL(10.8%)and long-term storage and circulation stability,and showed enhanced cellular uptake,apoptosis,cytotoxicity,and growth inhibition for in vitro MCF-7/ADR and/or MCF-7/ADR multicellular spheroids and in vivo MCF-7/ADR tumors via efficiently targeted drug release at tumoral intracellular pH(5.0),MDR reversal of TPGS,and synergistic effect of DOX and TPGS.Therefore,the pH-sensitive micelles self-assembled from star-shaped TPGS copolymers with ortho ester linkages are potentially useful to clinically transform for enhanced MDR cancer treatment.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
文摘The purposes of this research were to synthesize and characterize star-shaped poly lactide-co-glycolide-β-cyclo-dextrin (PLGA-β-CD) copolymer by reacting L-lactide, glycolide and β-cyclodextrin in the presence of stannous octoate as a catalyst. The structure of PLGA-β-CD copolymer was confirmed with 1H-NMR, 13C-NMR and FT-IR spectra. Albumin as a model peptide drug was encapsulated within nanoparticles made of PLGA-β-CD with a modified double emulsion method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) photomicrographs showed that the nanoparticles have the mean diameter within the range of 80 - 210 nm. Also they were almost spherical in shape. Effects of the experimental parameters, such as copolymer composition, copolymer concentration, and reaction temperature, on particular size and encapsulation efficiency were investigated.
基金This work was supported by the National Natural Science Foundation of China (No.60425101 and No.20674049), the Program for New Century Excellent Talents in University (No.NCET-06-0812), and the Young Talent Project at University of Electronic Science and Technology of China (No.060206).
文摘White organic light-emitting diodes (WOLEDs) with a structure of indium-tin-oxide (ITO)/N,N'-bis- (1-naphthyl)-N,N'-diphenyl- (1, 1'-biphenyl)-4,4'-diamine (NPB)/1,2,3,4,5,6-hexakis(9,9-diethyl-9H-fluoren-2- yl)benzene (HKEthFLYPh)/5,6,11,12-tetraphenylnaphtacene (rubrene)/tris(8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag were fabricated by vacuum deposition method, in which a novel star-shaped hexafluorenyl- benzene HKEthFLYPh was used as an energy transfer layer, and an ultrathin layer of rubrene was inserted between HKEthFLYPh and Alq3 layers as a yellow light-emitting layer instead of using a time-consuming doping process. A fairly pure WOLED with Commissions Internationale De L'Eclairage (CIE) coordinates of (0.32, 0.33) was obtained when the thickness of rubrene was 0.3 nm, and the spectrum was insensitive to the applied voltage. The device yielded a maximum luminance of 4816 cd/m2 at 18 V.
基金Theme-based research scheme of Hong Kong Research Grant Council(RGC Ref:T13-402/17-N)National Natural Science Foundation of China(No.U1804251)。
文摘After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,Magnesium-Zinc-Gadolinium(ZG21)wires are developed to bunch the tendon graft for matching the bone tunnel during transplantation.Microstructure,tensile strength,degradation,and cytotoxicity of ZG21 wire are evaluated.The rabbit model is used for assessing the biological effects of ZG21 wire by Micro-CT,histology,and mechanical test.The SEM/EDS,immunochemistry,and in vitro assessments are performed to investigate the underlying mechanism.Material tests demonstrate the high formability of ZG21 wire as surgical suture.Micro-CT shows ZG21 wire degradation accelerates tunnel bone formation,and histologically with earlier and more fibrocartilage regeneration at the healing interface.The mechanical test shows higher ultimate load in the ZG21 group.The SEM/EDS presents ZG21 wire degradation triggered calcium phosphate(Ca-P)deposition.IHC results demonstrate upregulation of Wnt3a,BMP2,and VEGF at the early phase and TGFβ3 and Type II collagen at the late phase of healing.In vitro tests also confirmed the Ca-P in the metal extract could elevate the expression of Wnt3a,βcatenin,ocn and opn to stimulate osteogenesis.Ex vivo tests of clinical samples indicated suturing with ZG21 wire did not weaken the ultimate loading of human tendon tissue.In conclusion,the ZG21 wire is feasible for tendon graft bunching.Its degradation products accelerated intra-tunnel endochondral ossification at the early healing stage and therefore enhanced bone-tendon interface healing in ACL reconstruction.
基金Intelligent Manufacturing and Robot Technology Innovation Project of Beijing Municipal Commission of Science and Technology and Zhongguancun Science and Technology Park Management Committee,Grant/Award Number:Z221100000222016National Natural Science Foundation of China,Grant/Award Number:62076014Beijing Municipal Education Commission and Beijing Natural Science Foundation,Grant/Award Number:KZ202010005004。
文摘Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection.
基金the National Natural Science Foundation of China(Nos.U21A2051,52173297,52071133)the R&D Projects of Henan Academy of Sciences of China(No.220910009)+2 种基金the Key R&D and Promotion Projects of Henan Province of China(No.212102210441)the Joint Fund of Henan Science and Technology R&D Plan of China(No.222103810037)the Zhongyuan Scholar Workstation Funded Project of China(No.214400510028).
文摘A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.
基金financial support from the National Nature Science Foundation of China (No.52274369)the Hunan Provincial Natural Science Foundation,China (No.2024JJ6521)。
文摘A biodegradable Mg−2Zn−0.4Sc−0.2Zr(ZK20−0.4Sc)alloy wire with a diameter of 0.5 mm was prepared by a combination of hot extrusion and cold-drawing.The average grain size of ZK20−0.4Sc alloy wire on the longitudinal section along the drawing direction is approximately 7.3μm.The texture results show relatively strong<1020>and weak<1010>fiber texture components parallel to the drawing direction.The ZK20−0.4Sc alloy wire exhibits better mechanical properties with the tensile strength,yield strength and elongate of(329±2)MPa,(287±2)MPa and(14.2±0.5)%,respectively.The better mechanical properties are mainly attributed to the grain refinement strengthening,dislocation strengthening and precipitation strengthening.With the immersion time increasing to 14 d,the corrosion type transfers from filament corrosion and pitting corrosion to severe localized corrosion.
基金supported by the National Natural Science Foundation of China (Grant No.51805086)。
文摘Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).