期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Characterization and Expression Analysis of Starch Branching Enzymes in Sweet Potato 被引量:5
1
作者 QIN Hua ZHOU Shuang ZHANG Yi-zheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第9期1530-1539,共10页
Spatial and temporal expression patterns of Sbel and Sbe2 that encode starch branching enzyme (SBE) Ⅰ and Ⅱ, respectively, in sweet potato (Ipomoea batatas L.) were analyzed. Expression of both genes in Escheric... Spatial and temporal expression patterns of Sbel and Sbe2 that encode starch branching enzyme (SBE) Ⅰ and Ⅱ, respectively, in sweet potato (Ipomoea batatas L.) were analyzed. Expression of both genes in Escherichia coli indicate that both genes encoded active SBE. Analysis with real-time quantitative polymerase chain reaction technique indicates that IbSbel mRNA was expressed at very low levels in leaves but was the predominant isoform in tuberous root while the reverse case was found for lbSbe2. The expression pattern of IbSbel, closely resembles that of AGPase S, a gene coding for one of the subunits ofADP-glucose pyrophosphorylase, which is the key regulatory enzyme in the starch biosynthetic pathway. Western analysis detected at least two isoforms of SBE I in tuberous roots, those two isoforms showed adverse expression patterns with the development of the tuberous roots. Expression of the two IbSbe genes exhibited a diurnal rhythm during a 12-h cycle when fed a continuous solution of sucrose. Abscisic acid (ABA) was aother potent inducer of IbSbe expression, but bypassed the semidian oscillator. 展开更多
关键词 sweet potato starch branching enzyme cDNA cloning cDNA expression expression patterns sucroseinduction ABA induction
下载PDF
Temperature Stress at Grain Filling Stage Mediates Expression of Three Isoform Genes Encoding Starch Branching Enzymes in Rice Endosperm 被引量:3
2
作者 WEI Ke-su CHENG Fang-min ZHANG Qi-fang Liu Kui-gang 《Rice science》 SCIE 2009年第3期187-193,共7页
An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32℃ for high temperature and 22℃ for opt... An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32℃ for high temperature and 22℃ for optimum temperature) at the grain filling stage in plant growth chambers, and the different expressions of three isoform genes (SBEI, SBEIII and SBE/V) encoding starch branching enzyme (SBE) in the endosperms were studied by the real-time fluorescence quantitative PCR (FQ-PCR) method. Effects of high temperature on the SBE expression in developing rice endosperrns were isoform-dependent. High temperature significantly down-regulated the expressions of SBEI and SBEIII, while up-regulated the expression of SBEIV. Compared with SBEIV and SBEIII, the expression of SBEI gene in Zhefu 49 rice endosperms was more sensitive to temperature variation at the grain filling stage. This study indicates that changes in weather/climate conditions especially temperature stress influence rice grain formation and its quality as evidenced by isoform expression. 展开更多
关键词 RICE high temperature starch branching enzyme ISOFORM gene expression real-time fluorescence quantitative PCR rice quality
下载PDF
Effects of Weak Light on Starch Accumulation and Starch Synthesis Enzyme Activities in Rice at the Grain Filling Stage 被引量:7
3
作者 LI Tian Ryu OHSUGI +1 位作者 Tohru YAMAGISHI Haruto SASAKI 《Rice science》 SCIE 2006年第1期51-58,共8页
Dynamic changes of starch, amylose, sucrose contents and the activities of starch synthesis enzymes under shading treatments alter flowering were studied using two rice varieties IR72 (indica) and Nipponbare (japon... Dynamic changes of starch, amylose, sucrose contents and the activities of starch synthesis enzymes under shading treatments alter flowering were studied using two rice varieties IR72 (indica) and Nipponbare (japonica) as materials. Under shading treatments, the starch, amylose and sucrose contents decreased, while ADP-glucose pyrophosphorylase (ADPGPPase) activity only changed a little, soluble starch synthase activity and granule bound starch synthase activity decreased, soluble starch branching enzyme (SSBE, Q-enzyme) activity and granule bound starch branching enzyme (GBSBE, Q-enzyme) activity increased, and starch debranching enzyme (DBE, R-enzyme) activity varied with varieties. Correlation analyses showed that the changes of starch content were positively and significantly correlated with the changes of sucrose content in the weak light. Both ADPGPPase activity and SSBE activity were positively and significantly correlated with starch accumulation rate. It was implied that the decline of starch synthase activities was related to the decrease of starch content and the increase of the activity of starch branching enzyme played an important role in the decrease of the ratio of amylose to the total starch under the weak light. 展开更多
关键词 weak light starch content ADP-glucose pyrophosphorylase starch synthase starch branching enzyme starch debranching enzyme RICE
下载PDF
Origin and evolution of the main starch biosynthetic enzymes
4
作者 Hong Chang Jie Bai +6 位作者 Hejian Zhang Rong Huang Huanyu Chu Qian Wang Hao Liu Jian Cheng Huifeng Jiang 《Synthetic and Systems Biotechnology》 SCIE CSCD 2023年第3期462-468,共7页
Starch,a semi-crystalline energy storage form primarily found in plant plastids plays a crucial role in various food or no-food applications.Despite the starch biosynthetic pathway’s main enzymes have been characteri... Starch,a semi-crystalline energy storage form primarily found in plant plastids plays a crucial role in various food or no-food applications.Despite the starch biosynthetic pathway’s main enzymes have been characterized,their origin and evolution remained a subject of debate.In this study,we conducted the comprehensive phylogenetic and structural analysis of three types of starch biosynthetic enzymes:starch synthase(SS),starch branching enzyme(SBE)and isoamylase-type debranching enzyme(ISA)from 51,151 annotated genomes.Our findings provide valuable insights into the possible scenario for the origin and evolution of the starch biosynthetic pathway.Initially,the ancestor of SBE can be traced back to an unidentified bacterium that existed before the formation of the last eukaryotic common ancestor(LECA)via horizontal gene transfer(HGT).This transfer event likely provided the eukaryote ancestor with the ability to synthesize glycogen.Furthermore,during the emergence of Archaeplastida,one clade of SS was transferred from Deltaproteobacteria by HGT,while ISA and the other clade of SS originated from Chlamydiae through endosymbiosis gene transfer(EGT).Both these transfer events collectively contributed to the establishment of the original starch biosynthetic pathway.Subsequently,after the divergence of Viridiplantae from Rhodophyta,all three enzymes underwent multiple duplications and N-terminus extension domain modifications,resulting in the formation of functionally specialized isoforms and ultimately leading to the complete starch biosynthetic pathway.By shedding light on the evolutionary origins of key enzymes involved in the starch biosynthetic pathway,this study provides important insights into the evolutionary events of plants. 展开更多
关键词 ORIGIN EVOLUTION starch biosynthesis starch synthase starch branching enzyme Isoamylase-type debranching enzyme
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部