For the purpose of alleviating the adverse effect of paste aging on the properties of corn starch film, a series of electroneutrally quaternized/sulfosuccinylated starches(EQSS) with different degrees of substitutio...For the purpose of alleviating the adverse effect of paste aging on the properties of corn starch film, a series of electroneutrally quaternized/sulfosuccinylated starches(EQSS) with different degrees of substitution(DS) were synthesized via the quaternization/sulfosuccination of acid-thinned corn starch(ATS) by varying the amounts of N-(3-chloro-2-hydroxypropl) trimethylammonium chloride, maleic anhydride, and sodium hydrogen sulfite. The influence of paste aging on the properties of starch film cast from heat-induced starch paste was investigated and the properties were explored in terms of tensile strength, elongation, work at break, degree of crystallinity, and flex-fatigue resistance. The experimental results showed that the paste ageing generated adverse influence on the elongation, work at break, and flex-fatigue resistance of starch film. Further experiments showed that electroneutral quaternization/sulfosuccination of starch were able to alleviate the negative effect of paste ageing on the elongation, work at break, and flex-fatigue resistance, thereby obviously enhancing the elongation, work at break and flex-fatigue resistance, and thus reducing the drawback of brittleness. The enhancement depended on the amounts of the substituents introduced. With the increase in DS value, the elongation and work at break as well as flex-fatigue resistance continuously rose, whereas the tensile strength gradually reduced.展开更多
Biodegradable plastics have attracted considerable attention in recent years due to their biodegradability,biocompatibility and non-toxicity.In this study,normal maize starch(containing 25%amylose)and high-amylose mai...Biodegradable plastics have attracted considerable attention in recent years due to their biodegradability,biocompatibility and non-toxicity.In this study,normal maize starch(containing 25%amylose)and high-amylose maize starch(containing 80%amylose)were served as model materials to prepare starch/polyvinyl alcohol(PVA)blends.To comprehensively study the effects of amylose contents on the film performances,the mechanical properties,water resistance and anaerobic biodegradability of the two films were examined.Moreover,the processes of anaerobic degradation were investigated by evolutions of biogas production,pH in reactors and the changes of film structures and compositions.The results indicated that amylose content played an important role in the microstructures of starch film as well as mechanical properties and water resistance,whereas it had no significant influence on anaerobic biodegradability of the films.Nonetheless,the structure of high-amylose maize starch/PVA film was more suitable and beneficial to the anaerobic biodegradation than that of the normal maize starch/PVA film,because it could effectively avoid accumulation of volatile fatty acids,which contributed to the stable biogas production,short fermentation period and non-souring in the reactor.展开更多
A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for in...A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for investigating the influences of starch dodecenylsuccinylation upon the performances such as apparent viscosity and surface tension of starch paste, film behaviors,and adhesion to fibers for warp sizing. It was found that the dodecenylsuccinylation was able to reduce the surface tension of cooked starch paste and enhance the adhesion of starch to polyester fibers. It was also capable of depressing the brittleness of native starch and improving the mechanical behaviours such as breaking elongation and work-to-break of starch film. Initial increase in DS level of dodecenylsuccinylation enhanced these positive effects,while excessively increasing the level resulted in marked reduction in tensile strength of starch film and significant decrement in reaction efficiency. X-ray diffraction patterns of starch films showed the dodecenylsuccinates derivatized onto the backbones of starch depressed the degree of crystallinity of starch film. Based on the paste behaviors, adhesion, and film properties, the dodecenylsuccinylation level is recommended in a range of 0. 015-0. 025 for sizing polyester warps.展开更多
Polymer blends of cold water soluble starches (amylose or amylopectin soluble starch) with gelatin were prepared using solvent casting method. The solid state miscibility and polymer-polymer interactions between the c...Polymer blends of cold water soluble starches (amylose or amylopectin soluble starch) with gelatin were prepared using solvent casting method. The solid state miscibility and polymer-polymer interactions between the constituent polymers were studied by fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorirmetry (DSC), light optical microscopy (OP) and scanning electron microscopy (SEM), whereas the thermal stability of the blends was studied by thermogravimetric analysis (TGA). Furthermore, tensile and water vapor barrier properties of the blends were assessed. The obtained results exhibited that gelatin was more miscible with amylose soluble starch than with amylopectin soluble starch. Moreover, enhancing mechanical and water barrier properties of amylose soluble starch/gelatin blends were more pronounced than those of amylopectin soluble starch/gelatin blends. Generally, tensile strength (TS) and Elongation percentage (E) of the blend films were found to be gradually increased with increasing the proportion of gelatin. Nevertheless, increasing starch proportion was in favor of decreasing water vapor permeability (WVP). At equal proportions of starch and gelatin (1:1), TS was raised up to 8.69 MPa for amylose soluble starch/gelatin blend films while it raised up to 4.96 MPa for amylopectin soluble starch/gelatin blend films, and so on E was increased to its maximum by ~179.6% for soluble amylose starch/gelatin blends while it was increased to ~114.5% for amylopectin soluble starch/gelatin blends. On the other hand, WVP was significantly decreased to be 6.46 and 12.09 g·mm/m2·day·kPa for blends of amylose and amylopectin soluble?starches, respectively.展开更多
The structural and thermomechanical properties of starch-based plastic films reinforced with kaolin and metakaolin have been studied by various techniques (X-ray diffraction, IR-TF spectroscopy, scanning electron micr...The structural and thermomechanical properties of starch-based plastic films reinforced with kaolin and metakaolin have been studied by various techniques (X-ray diffraction, IR-TF spectroscopy, scanning electron microscopy, tensile tests, and thermal resistance). The results obtained showed that kaolin, an inert material, prevents the starch from losing its granular structure and to solubilize during the heating, generating plastic films of low Young’s modulus (7 MPa). On the other hand, metakaolin, an amorphous and dehydroxylated material obtained after heating of kaolin at 700°C for 1 hour, substantially improves the thermomechanical properties of the plastic films. The Young’s modulus increases from 19 MPa to 25 MPa while the thermal resistance increases from 90°C to 120°C. This was attributed to good dispersion of the metakaolin in the polymer matrix after the loss of the granular structure of the starch during heating.展开更多
The use of plastics from petrochemical resources poses environmental impacts, and one of the alternative solutions is the use of starch. The objective of this present work has been to present the literature on starch,...The use of plastics from petrochemical resources poses environmental impacts, and one of the alternative solutions is the use of starch. The objective of this present work has been to present the literature on starch, and to highlight the debate in the development of composite films. The approach adopted was to present the state of the art on starch and thermoplastic starch matrix composites. The work shows that starch is available worldwide and can be used in the manufacture of biodegradable plastics;the debate remains on the reinforcement of thermoplastic starch to improve its physical and mechanical properties poor;then researchers must diversify the reinforcements to see the impact on the properties of thermoplastic starch.展开更多
基金Funded by the Open Project Program of Key Laboratory of Eco-Textiles,Ministry of Education,China(No.KLET0617)the Scientific Research Fund of Talent Introduction of Anhui Polytechnic University(No.2016YQQ004)
文摘For the purpose of alleviating the adverse effect of paste aging on the properties of corn starch film, a series of electroneutrally quaternized/sulfosuccinylated starches(EQSS) with different degrees of substitution(DS) were synthesized via the quaternization/sulfosuccination of acid-thinned corn starch(ATS) by varying the amounts of N-(3-chloro-2-hydroxypropl) trimethylammonium chloride, maleic anhydride, and sodium hydrogen sulfite. The influence of paste aging on the properties of starch film cast from heat-induced starch paste was investigated and the properties were explored in terms of tensile strength, elongation, work at break, degree of crystallinity, and flex-fatigue resistance. The experimental results showed that the paste ageing generated adverse influence on the elongation, work at break, and flex-fatigue resistance of starch film. Further experiments showed that electroneutral quaternization/sulfosuccination of starch were able to alleviate the negative effect of paste ageing on the elongation, work at break, and flex-fatigue resistance, thereby obviously enhancing the elongation, work at break and flex-fatigue resistance, and thus reducing the drawback of brittleness. The enhancement depended on the amounts of the substituents introduced. With the increase in DS value, the elongation and work at break as well as flex-fatigue resistance continuously rose, whereas the tensile strength gradually reduced.
基金the Natural Science Foundation of Higher Education Institutes of Anhui Province,China(Grant No.KJ2014A073)Anhui Province Natural Sciences Foundation,China(Grant No.1508085SQE213).
文摘Biodegradable plastics have attracted considerable attention in recent years due to their biodegradability,biocompatibility and non-toxicity.In this study,normal maize starch(containing 25%amylose)and high-amylose maize starch(containing 80%amylose)were served as model materials to prepare starch/polyvinyl alcohol(PVA)blends.To comprehensively study the effects of amylose contents on the film performances,the mechanical properties,water resistance and anaerobic biodegradability of the two films were examined.Moreover,the processes of anaerobic degradation were investigated by evolutions of biogas production,pH in reactors and the changes of film structures and compositions.The results indicated that amylose content played an important role in the microstructures of starch film as well as mechanical properties and water resistance,whereas it had no significant influence on anaerobic biodegradability of the films.Nonetheless,the structure of high-amylose maize starch/PVA film was more suitable and beneficial to the anaerobic biodegradation than that of the normal maize starch/PVA film,because it could effectively avoid accumulation of volatile fatty acids,which contributed to the stable biogas production,short fermentation period and non-souring in the reactor.
基金the Fund of Anhui Province Science Research Projects,China(No.1106b0105062)the Research Foundation Program of Scientific and Technological Innovation Team of College and University at the Provincial Level of Anhui,China(No.TD200710)
文摘A series of dodecenylsuccinylated starches( DSSs) with different degree of substitution( DS) were prepared via the esterification of dodencenylsuccinic anhydride with hydrolyzed cornstarch in aqueous dispersion for investigating the influences of starch dodecenylsuccinylation upon the performances such as apparent viscosity and surface tension of starch paste, film behaviors,and adhesion to fibers for warp sizing. It was found that the dodecenylsuccinylation was able to reduce the surface tension of cooked starch paste and enhance the adhesion of starch to polyester fibers. It was also capable of depressing the brittleness of native starch and improving the mechanical behaviours such as breaking elongation and work-to-break of starch film. Initial increase in DS level of dodecenylsuccinylation enhanced these positive effects,while excessively increasing the level resulted in marked reduction in tensile strength of starch film and significant decrement in reaction efficiency. X-ray diffraction patterns of starch films showed the dodecenylsuccinates derivatized onto the backbones of starch depressed the degree of crystallinity of starch film. Based on the paste behaviors, adhesion, and film properties, the dodecenylsuccinylation level is recommended in a range of 0. 015-0. 025 for sizing polyester warps.
文摘Polymer blends of cold water soluble starches (amylose or amylopectin soluble starch) with gelatin were prepared using solvent casting method. The solid state miscibility and polymer-polymer interactions between the constituent polymers were studied by fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorirmetry (DSC), light optical microscopy (OP) and scanning electron microscopy (SEM), whereas the thermal stability of the blends was studied by thermogravimetric analysis (TGA). Furthermore, tensile and water vapor barrier properties of the blends were assessed. The obtained results exhibited that gelatin was more miscible with amylose soluble starch than with amylopectin soluble starch. Moreover, enhancing mechanical and water barrier properties of amylose soluble starch/gelatin blends were more pronounced than those of amylopectin soluble starch/gelatin blends. Generally, tensile strength (TS) and Elongation percentage (E) of the blend films were found to be gradually increased with increasing the proportion of gelatin. Nevertheless, increasing starch proportion was in favor of decreasing water vapor permeability (WVP). At equal proportions of starch and gelatin (1:1), TS was raised up to 8.69 MPa for amylose soluble starch/gelatin blend films while it raised up to 4.96 MPa for amylopectin soluble starch/gelatin blend films, and so on E was increased to its maximum by ~179.6% for soluble amylose starch/gelatin blends while it was increased to ~114.5% for amylopectin soluble starch/gelatin blends. On the other hand, WVP was significantly decreased to be 6.46 and 12.09 g·mm/m2·day·kPa for blends of amylose and amylopectin soluble?starches, respectively.
文摘The structural and thermomechanical properties of starch-based plastic films reinforced with kaolin and metakaolin have been studied by various techniques (X-ray diffraction, IR-TF spectroscopy, scanning electron microscopy, tensile tests, and thermal resistance). The results obtained showed that kaolin, an inert material, prevents the starch from losing its granular structure and to solubilize during the heating, generating plastic films of low Young’s modulus (7 MPa). On the other hand, metakaolin, an amorphous and dehydroxylated material obtained after heating of kaolin at 700°C for 1 hour, substantially improves the thermomechanical properties of the plastic films. The Young’s modulus increases from 19 MPa to 25 MPa while the thermal resistance increases from 90°C to 120°C. This was attributed to good dispersion of the metakaolin in the polymer matrix after the loss of the granular structure of the starch during heating.
文摘The use of plastics from petrochemical resources poses environmental impacts, and one of the alternative solutions is the use of starch. The objective of this present work has been to present the literature on starch, and to highlight the debate in the development of composite films. The approach adopted was to present the state of the art on starch and thermoplastic starch matrix composites. The work shows that starch is available worldwide and can be used in the manufacture of biodegradable plastics;the debate remains on the reinforcement of thermoplastic starch to improve its physical and mechanical properties poor;then researchers must diversify the reinforcements to see the impact on the properties of thermoplastic starch.