To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb)....To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.展开更多
The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits...The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits during grainfilling remains poorly understood.In this study,the concentrations of protein,oil,and starch were studied in 204 recombinant inbred lines resulting from a cross between DH1M and T877 at four different stages post-pollination.All the traits exhibited considerable phenotypic variation.During the grain-filling stage,the levels of protein and starch content generally increased,whereas oil content decreased,with significant changes observed between 30 and 40 days after pollination.Quantitative trait locus(QTL)mapping was conducted and a total of 32 QTLs,comprising 14,12,and 6 QTLs for grain protein,oil,and starch content were detected,respectively.Few QTLs were consistently detectable across different time points.By integrating QTL analysis,glo-bal gene expression profiling,and comparative genomics,we identified 157,86,and 54 differentially expressed genes harboring nonsynonymous substitutions between the parental lines for grain protein,oil,and starch con-tent,respectively.Subsequent gene function annotation prioritized 15 candidate genes potentially involved in reg-ulating grain quality traits,including those encoding transcription factors(NAC,MADS-box,bZIP,and MYB),cell wall invertase,cellulose-synthase-like protein,cell division cycle protein,trehalase,auxin-responsive factor,and phloem protein 2-A13.Our study offers significant insights into the genetic architecture of maize kernel nutritional quality and identifies promising QTLs and candidate genes,which are crucial for the genetic enhance-ment of these traits in maize breeding programs.展开更多
In this study, 34 molecular markers of starch synthesis-related genes were used to evaluate the genetic variation and population structure of 87 indica rice cultivars from different countries and regions. The results ...In this study, 34 molecular markers of starch synthesis-related genes were used to evaluate the genetic variation and population structure of 87 indica rice cultivars from different countries and regions. The results showed that a total of 80 alleles were amplified using 34 primer pairs, with an average of 2.5 alleles per locus. The allele number varied from 2 to 6 among various cultivars. Shannon's diversity index of molecular markers varied from 0.303 to 0.796, with an average of 0.539. Polymorphism information content (PIC) varied from 0.084 to 0.658, with an average of 0.295. The genetic similarity coefficients of 87 indica rice cultivars ranged from 0.265 to 0.990, indicating significant genetic differences of starch synthesis-related genes among different cultivars, but the variation frequency of alleles varied among different cultivars. Population structure analysis showed that these 87 indica rice cultivars were divided into three categories. Genetic differences were small within the same category but great among different categories. Moreover, indica rice cultivars with simple genetic components accounted for 39.1% and those with complex genetic background accounted for 60.9%. This study may not only provide theoretical basis for genetic improvement of rice starch quality, but also lay a solid foundation for subsequent association analysis of rice quality-related traits.展开更多
In this study, the genotypes of starch synthesis-related genes were systematically screened from different rice varieties using molecular markers. The results showed that starch synthesis-related genes were highly pol...In this study, the genotypes of starch synthesis-related genes were systematically screened from different rice varieties using molecular markers. The results showed that starch synthesis-related genes were highly polymorphic between indica and japonica varieties, as they greatly variated among indica varieties, but were conserved among japonica varieties. The genotypes of two indica varieties9311 and Minghui 63 were more similar to that of japonica varieties. Two or three alleles of six starch synthesis-related genes were found in 28 japonica parental varieties. Four genotypes of two soluble starch synthase genes, SSIIa and SSIIIa,were detected in 88 stable lines derived from the cross of Kanto 194/ Wujing 13 using molecular markers.展开更多
High temperature is the major environmental factor affecting grain starch properties of cooking rice cultivars. In this study, two non-waxy indica rice genotypes, cv. 9311 and its mutant with extremely high amylose ph...High temperature is the major environmental factor affecting grain starch properties of cooking rice cultivars. In this study, two non-waxy indica rice genotypes, cv. 9311 and its mutant with extremely high amylose phenotype(9311eha) were used to study the differential expressions of genes in starch synthesis and their responses to high temperature(HT). Significant increase in apparent amylose content and hot-water-soluble starch content in mutant 9311 eha were genetically caused by a substitution from AGTTATA to AGGTATA at the leader intron 5′ splice site in Wx gene. This mutation resulted in different m RNA transcript levels, m RNA splicing efficiencies and protein levels of Wx between the two rice genotypes, which also lead to the genotype-dependent alteration in the temporal pattern of Wx transcription and granule-bound starch synthase(GBSS) activity in response to HT. However, changes in the activities of other starch synthesizing enzymes and their expressions of distinct isoform genes were not significant with the Wx gene mutation, thus only minor difference in the particle size of starch granule, chain-length distribution and gelatinization enthalpy were found between the two genotypes. The temporal-specific expression of multiple isoform genes responsive to different temperature regiments indicated that the reduction of GBSS transcript expression under HT was generally accompanied by the decreased expressions of SSSIIa, SSSIIIa and SBEIIb. Consequently, high temperature-ripened grains in 9311 eha showed high proportion of intermediate and long B chains and somewhat lower level of short A chain compared to the wildtype. The temperature-dependent alteration of amylose content was not only attributed to the reduced expression of GBSS, but also associated with the complimentary effect of SSSIIa and SBEIIb.展开更多
The property of starch in rice grain endosperm is a very important determinant for rice quality, and it is essential to understand the genetic effect of the genes related to starch synthesis in high-yielding rice vari...The property of starch in rice grain endosperm is a very important determinant for rice quality, and it is essential to understand the genetic effect of the genes related to starch synthesis in high-yielding rice varieties for rice quality improvement. The physicochemical properties (e.g., amylose content, gel consistency, and RVA profile) were assessed on 53 rice varieties, including certain typical indica/japonica landraces and certain high-yielding modern varieties. And molecular markers for Sbel, Sbe3 developed on the basis of sequence diversities between the rice subspecies indica and japonica, together with PCR-Acc I marker for Wx gene were used to investigate the genotypes of 53 rice cultivars. The result showed that the developed molecular markers for Wx, Sbel, Sbe3 could distinguish indica or japonica alleles at three loci. Among all the 53 rice cultivars, six genotypes were observed when Sbel, Sbe3, and Wx loci were considered together, while the genotypes of WxiSbelJSbe3i and WxiSbelJSbe3J were absent. In order to explore the genetic effects of the three genes, especially for starch branching enzyme genes, ANOVA and multiple comparison analysis were conducted. The results showed that rice cultivars with different genotypes exhibited different phenotypes, including amylose content, gel consistency and certain RVA characteristics, and the significant differences among the six genotypes were observed. It was concluded that these three genes had randomly recombined during the process of the rice variety development. And the genetic effects of indica and japonica alleles at three gene loci were different, of which, Wx gene plays a major role in determining the starch properties, followed by Sbel and Sbe3, and the genetic effects of Sbel and Sbe3 in different backgrounds (Wx~, WxJ) are different. The results have provided a clue for rice good quality variety development, and the molecular markers will benefit to the improvement in quality of rice.展开更多
An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32℃ for high temperature and 22℃ for opt...An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32℃ for high temperature and 22℃ for optimum temperature) at the grain filling stage in plant growth chambers, and the different expressions of three isoform genes (SBEI, SBEIII and SBE/V) encoding starch branching enzyme (SBE) in the endosperms were studied by the real-time fluorescence quantitative PCR (FQ-PCR) method. Effects of high temperature on the SBE expression in developing rice endosperrns were isoform-dependent. High temperature significantly down-regulated the expressions of SBEI and SBEIII, while up-regulated the expression of SBEIV. Compared with SBEIV and SBEIII, the expression of SBEI gene in Zhefu 49 rice endosperms was more sensitive to temperature variation at the grain filling stage. This study indicates that changes in weather/climate conditions especially temperature stress influence rice grain formation and its quality as evidenced by isoform expression.展开更多
The sense and antisense fragments of the soluble starch synthase (SSII1) gene and the intron fragment of somatic embryogenesis receptor-like kinase (SERK1) gene were cloned from potato using PCR techniques. The RN...The sense and antisense fragments of the soluble starch synthase (SSII1) gene and the intron fragment of somatic embryogenesis receptor-like kinase (SERK1) gene were cloned from potato using PCR techniques. The RNAi plant expression vectors pBI-SSIII-RNAi and pBIC-SSIII-RNAi were constructed which containing fusion fragment of "sense fragment-intron-antisense fragment" driven by the constitutive expression promoter CaMV 35S and the tuber-specific expression promoter CIPP, respectively. The putative transgenic plants of potato cultivars Kexin-1 and Kexin-4 were obtained using Agrobacterium-mediated transformation method. PCR assay showed that the interference fragment of SSlll gene was integrated into potato genome. The RT-PCR analysis showed that the expression of SSlll gene was repressed apparently on the transcription level. Starch granules of the transgenic potato plants were different in morphology and became cracked in starch granule centre compared with the non-transgenic control plants. The amylose content of starch was increased by 2.68-29.05%, amylopectin to amylose ratio of starch had declined significantly, and the phosphorus content of the starch of the transgenic plants was reduced 9.94-58.36% compared with control plants. The results could provide certain foundation for improvement of potato starch quality.展开更多
Starch is the major carbohydrate in oat (Avena sativa L.) and starch formation requires the coordinated actions of several synthesis enzymes. In this study, the granule morphology, composition and physicochemical pr...Starch is the major carbohydrate in oat (Avena sativa L.) and starch formation requires the coordinated actions of several synthesis enzymes. In this study, the granule morphology, composition and physicochemical properties of oat starch, as well as the expressions of starch synthesis genes were investigated during oat endosperm development. Under the scanning electron microscopy (SEM), we observed that the unique compound granules were developed in oat endosperms at 10 days post anthesis (DPA) and then fragmented into irregular or polygonal simple granules from 12 DPA until seed maturity. The amylose content, branch chain length of degree of polymerization (DP=13-24), gelatinization temperature and percentage of retrogradation were gradually increased during the endosperm development; whereas the distribution of short chains (DP=6-12) were gradually decreased. The relative expressions of 4 classes of 13 starch synthesis genes characterized in this study indicated that three expression pattern groups were significantly different among gene classes as well as among varied isoforms, in which the first group of starch synthesis genes may play a key role on the initiation of starch synthesis in oat endosperms.展开更多
The rice mutant ossac4(starch accumulating 4)was raised from seeds of the rice(Oryza sativa L.)indica maintainer line Xinong 1B treated with ethyl methanesulfonate.The distal and medial portions of the second leaf dis...The rice mutant ossac4(starch accumulating 4)was raised from seeds of the rice(Oryza sativa L.)indica maintainer line Xinong 1B treated with ethyl methanesulfonate.The distal and medial portions of the second leaf displayed premature senescence in the ossac4 mutant at the four-leaf stage.Physiological and biochemical analysis,and cytological examination revealed that the ossac4 mutant exhibited the premature leaf senescence phenotype.At the four-leaf stage,the leaves of the ossac4 mutant exhibited significantly increased contents of starch compared with those of the wild type(WT).Quantitative real-time PCR analysis showed that the expression levels of photosynthesis-associated genes were down-regulated and the expression levels of glucose metabolism-associated genes were abnormal.Genetic analysis indicated that the ossac4 mutation was controlled by a single recessive nuclear gene.The OsSAC4 gene was localized to a 322.7-kb interval between the simple-sequence repeat marker XYH11-90 and the single-nucleotide polymorphism marker SNP5300 on chromosome 11.The target interval contained 20 annotated genes.The present results demonstrated that ossac4 represents a novel starch accumulation and premature leaf senescence mutant,and lays the foundation for cloning and functional analysis of OsSAC4.展开更多
[Objective] During the filling stage of plant growth and development, storage starch is diurnally synthesized and accumulated in the grains from cereal crops, but the underlying molecular mechanism is unclear. [Method...[Objective] During the filling stage of plant growth and development, storage starch is diurnally synthesized and accumulated in the grains from cereal crops, but the underlying molecular mechanism is unclear. [Method] In this study, grains from the bread wheat cultivar Zhoumai 18 grown in fields were harvested at 15 d after anthesis, and quantitative real-time reverse transcription polymerase chain reaction(qPCR) was used to measure the transcriptional levels of 26 genes encoding starch synthesis-related enzymes at 2 h intervals throughout a diurnal cycle. [Result] Our findings indicated that storage starch was persistently synthesized in wheat grains throughout a 24 h period. The diurnal patterns of the transcriptional levels of 26 genes in wheat grains were classified into two groups. The 13 genes in Group 1 were temporally and highly expressed in wheat grains,and their encoded proteins could play crucial roles in starch synthesis. The other 13 genes in Group 2 were characterized by low or no transcription in wheat grains throughout a diurnal cycle, suggesting their function in the synthesis or degradation of transitory starches in wheat grains. [Conclusion] These results provide information on the molecular mechanism of storage starch synthesis in higher plants.展开更多
Starch and the storage proteins are the main nutritious substances in crop grains,and their composition and content in grains play a decisive role in the grain quality of rice and other staple food crops.This review h...Starch and the storage proteins are the main nutritious substances in crop grains,and their composition and content in grains play a decisive role in the grain quality of rice and other staple food crops.This review has mainly summarized the new advances in the expression regulation of starch and storage protein synthesis related genes in rice grains.Moreover,the challenges of the starch and storage protein synthesis substances in rice genetic improvement were also discussed.This review will provide important information for genetic improvement of grain quality in rice and,potentially,other staple cereals.展开更多
Wild-type potato (Solanum tuberosum L.) plants and their transformants harboring agrobacterial rolB or rolC genes under control of the patatin class I promoter were cultured in vitro. These plants were used as a sourc...Wild-type potato (Solanum tuberosum L.) plants and their transformants harboring agrobacterial rolB or rolC genes under control of the patatin class I promoter were cultured in vitro. These plants were used as a source of single-node stem cuttings. The structure of native starch in tubers formed on cuttings was determined using methods of X-ray scattering and differential scanning microcalorimetry (DSC). It was found that in starch from tubers of rolB plants the melting temperature of crystalline lamella was lower and their thickness was less than that in wild-type potato. In tubers of rolC plants starch differed from starch in wild-type plants by a higher melting temperature, reduced melting enthalpy, and a greater thickness of crystalline lamellae. The melting of starch from tubers of rolC plants proceeded as the melting of two independent crystalline structures with melting temperatures of 338.0°K and 342.8°K. Overall data show that starches of different structure can be obtained by using transgenic approach.展开更多
The genetic diversity of 36 rice landraces and 43 breeding materials in the upper reaches of the Yangtze River in China was studied by intragenic molecular markers of 26 starch synthesis-related loci.And research on q...The genetic diversity of 36 rice landraces and 43 breeding materials in the upper reaches of the Yangtze River in China was studied by intragenic molecular markers of 26 starch synthesis-related loci.And research on quality traits such as the amylose content(AC),gel consistency(GC)and alkali spreading value(ASV)to analyze genetic differences in quality traits.The results showed that the number of alleles,average gene diversity and polymorphism information content values of landraces were higher than those of breeding materials.The genetic similarity coefficient(GS)of 79 rice materials ranged from 0.392 to 1,with an average of 0.757.There were significant variations in the quality traits of rice landraces and breeding materials,and the high-quality compliance rates were low,only 6.3%of the varieties have an amylose content that reached grade 1.The results of cluster analysis and population structure analysis are generally consistent;that is,the two resource types are closely related and cannot be clustered independently.This study can provide a basis for genetic improvement of rice starch quality.Make full use of the quality genetic diversity of landraces in modern breeding work,further broaden the genetic base of rice and improve rice quality.展开更多
To achieve the dual goals of high yield and good quality with low environmental costs,slow-release fertilizer(SRF)has been widely used in lotus cultivation as new type of fertilizer instead of traditional nitrogen fer...To achieve the dual goals of high yield and good quality with low environmental costs,slow-release fertilizer(SRF)has been widely used in lotus cultivation as new type of fertilizer instead of traditional nitrogen fertilizer.However,the optimal amount of SRF and how it would promote lotus rhizome quality remain unclear.This study was designed to investigate the photosynthetic characteristics and the synthesis,accumulation,and physicochemical properties of lotus rhizome starches under six SRF levels(CK,S1,S2,S3,S4,and S5).Compared with CK(0 kg ha^(–1)),the net photosynthetic rate(P_(n))and SPAD values of leaves remained at higher levels under SRF treatment.Further research showed that SRF increased the lotus rhizome yield,the contents of amylose,amylopectin,and total starch,and the number of starch granules.Among the six SRF levels,S3(1035 kg ha^(–1))showed the greatest difference from CK and produced the highest levels.With the increasing SRF levels,the peak,hot and final viscosities decreased at first and then increased,but the setback viscosity and pasting temperature increased.In order to interpret these changes at the molecular level,the activities of key enzymes and relative expression levels of starch accumulation related genes were analyzed.Each of these parameters also increased under SRF treatment,especially under the S3 treatment.The results of this study show that SRF,especially S3(1035 kg ha^(–1)),is a suitable fertilizer option for lotus planting which can improve lotus rhizome quality by affecting starch accumulations related enzymes and genes.These results will be useful for SRF application to high-quality lotus rhizome production with low environmental costs.展开更多
基金supported by the National Key Research and Development Program of China(2023YFD1202901)the China Agriculture Research System of MOF and MARA(CARS-02-06)the Key Area Research and Development Program of Guangdong Province(2018B020202008).
文摘To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.
基金supported by the Key Research and Development Program of Jiangsu Province(BE2022343)the Seed Industry Revitalization Project of Jiangsu Province(JBGS[2021]009)+2 种基金the National Natural Science Foundation of China(32061143030 and 31972487)Jiangsu Province University Basic Science Research Project(21KJA210002)the Innovative Research Team of Universities in Jiangsu Province,the High-End Talent Project of Yangzhou University,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and Qing Lan Project of Jiangsu Province.
文摘The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits during grainfilling remains poorly understood.In this study,the concentrations of protein,oil,and starch were studied in 204 recombinant inbred lines resulting from a cross between DH1M and T877 at four different stages post-pollination.All the traits exhibited considerable phenotypic variation.During the grain-filling stage,the levels of protein and starch content generally increased,whereas oil content decreased,with significant changes observed between 30 and 40 days after pollination.Quantitative trait locus(QTL)mapping was conducted and a total of 32 QTLs,comprising 14,12,and 6 QTLs for grain protein,oil,and starch content were detected,respectively.Few QTLs were consistently detectable across different time points.By integrating QTL analysis,glo-bal gene expression profiling,and comparative genomics,we identified 157,86,and 54 differentially expressed genes harboring nonsynonymous substitutions between the parental lines for grain protein,oil,and starch con-tent,respectively.Subsequent gene function annotation prioritized 15 candidate genes potentially involved in reg-ulating grain quality traits,including those encoding transcription factors(NAC,MADS-box,bZIP,and MYB),cell wall invertase,cellulose-synthase-like protein,cell division cycle protein,trehalase,auxin-responsive factor,and phloem protein 2-A13.Our study offers significant insights into the genetic architecture of maize kernel nutritional quality and identifies promising QTLs and candidate genes,which are crucial for the genetic enhance-ment of these traits in maize breeding programs.
基金Supported by Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province[CX(14)5107]Science and Technology Support Program of Jiangsu Province(BE2015355)Special Fund for Construction of Modern Agricultural Industry Technology System(CARS-01-47)~~
文摘In this study, 34 molecular markers of starch synthesis-related genes were used to evaluate the genetic variation and population structure of 87 indica rice cultivars from different countries and regions. The results showed that a total of 80 alleles were amplified using 34 primer pairs, with an average of 2.5 alleles per locus. The allele number varied from 2 to 6 among various cultivars. Shannon's diversity index of molecular markers varied from 0.303 to 0.796, with an average of 0.539. Polymorphism information content (PIC) varied from 0.084 to 0.658, with an average of 0.295. The genetic similarity coefficients of 87 indica rice cultivars ranged from 0.265 to 0.990, indicating significant genetic differences of starch synthesis-related genes among different cultivars, but the variation frequency of alleles varied among different cultivars. Population structure analysis showed that these 87 indica rice cultivars were divided into three categories. Genetic differences were small within the same category but great among different categories. Moreover, indica rice cultivars with simple genetic components accounted for 39.1% and those with complex genetic background accounted for 60.9%. This study may not only provide theoretical basis for genetic improvement of rice starch quality, but also lay a solid foundation for subsequent association analysis of rice quality-related traits.
基金Supported by the Agricultural Science Independent Innovation Foundation of Jiangsu Province[C X(12)1003]Key Technology Research and Development Program of Jiangsu Province(BE2013301)Earmarked Fund for China Agriculture Research System(CARS-01-47)~~
文摘In this study, the genotypes of starch synthesis-related genes were systematically screened from different rice varieties using molecular markers. The results showed that starch synthesis-related genes were highly polymorphic between indica and japonica varieties, as they greatly variated among indica varieties, but were conserved among japonica varieties. The genotypes of two indica varieties9311 and Minghui 63 were more similar to that of japonica varieties. Two or three alleles of six starch synthesis-related genes were found in 28 japonica parental varieties. Four genotypes of two soluble starch synthase genes, SSIIa and SSIIIa,were detected in 88 stable lines derived from the cross of Kanto 194/ Wujing 13 using molecular markers.
基金the National Natural Science Foundation of China (31071366 and 31271655)
文摘High temperature is the major environmental factor affecting grain starch properties of cooking rice cultivars. In this study, two non-waxy indica rice genotypes, cv. 9311 and its mutant with extremely high amylose phenotype(9311eha) were used to study the differential expressions of genes in starch synthesis and their responses to high temperature(HT). Significant increase in apparent amylose content and hot-water-soluble starch content in mutant 9311 eha were genetically caused by a substitution from AGTTATA to AGGTATA at the leader intron 5′ splice site in Wx gene. This mutation resulted in different m RNA transcript levels, m RNA splicing efficiencies and protein levels of Wx between the two rice genotypes, which also lead to the genotype-dependent alteration in the temporal pattern of Wx transcription and granule-bound starch synthase(GBSS) activity in response to HT. However, changes in the activities of other starch synthesizing enzymes and their expressions of distinct isoform genes were not significant with the Wx gene mutation, thus only minor difference in the particle size of starch granule, chain-length distribution and gelatinization enthalpy were found between the two genotypes. The temporal-specific expression of multiple isoform genes responsive to different temperature regiments indicated that the reduction of GBSS transcript expression under HT was generally accompanied by the decreased expressions of SSSIIa, SSSIIIa and SBEIIb. Consequently, high temperature-ripened grains in 9311 eha showed high proportion of intermediate and long B chains and somewhat lower level of short A chain compared to the wildtype. The temperature-dependent alteration of amylose content was not only attributed to the reduced expression of GBSS, but also associated with the complimentary effect of SSSIIa and SBEIIb.
基金This work was financially supported by the National Natural Science Foundation of China (30270809, 30300220 and 30530470)National 973 Project of China (2005CB 120804).
文摘The property of starch in rice grain endosperm is a very important determinant for rice quality, and it is essential to understand the genetic effect of the genes related to starch synthesis in high-yielding rice varieties for rice quality improvement. The physicochemical properties (e.g., amylose content, gel consistency, and RVA profile) were assessed on 53 rice varieties, including certain typical indica/japonica landraces and certain high-yielding modern varieties. And molecular markers for Sbel, Sbe3 developed on the basis of sequence diversities between the rice subspecies indica and japonica, together with PCR-Acc I marker for Wx gene were used to investigate the genotypes of 53 rice cultivars. The result showed that the developed molecular markers for Wx, Sbel, Sbe3 could distinguish indica or japonica alleles at three loci. Among all the 53 rice cultivars, six genotypes were observed when Sbel, Sbe3, and Wx loci were considered together, while the genotypes of WxiSbelJSbe3i and WxiSbelJSbe3J were absent. In order to explore the genetic effects of the three genes, especially for starch branching enzyme genes, ANOVA and multiple comparison analysis were conducted. The results showed that rice cultivars with different genotypes exhibited different phenotypes, including amylose content, gel consistency and certain RVA characteristics, and the significant differences among the six genotypes were observed. It was concluded that these three genes had randomly recombined during the process of the rice variety development. And the genetic effects of indica and japonica alleles at three gene loci were different, of which, Wx gene plays a major role in determining the starch properties, followed by Sbel and Sbe3, and the genetic effects of Sbel and Sbe3 in different backgrounds (Wx~, WxJ) are different. The results have provided a clue for rice good quality variety development, and the molecular markers will benefit to the improvement in quality of rice.
文摘An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32℃ for high temperature and 22℃ for optimum temperature) at the grain filling stage in plant growth chambers, and the different expressions of three isoform genes (SBEI, SBEIII and SBE/V) encoding starch branching enzyme (SBE) in the endosperms were studied by the real-time fluorescence quantitative PCR (FQ-PCR) method. Effects of high temperature on the SBE expression in developing rice endosperrns were isoform-dependent. High temperature significantly down-regulated the expressions of SBEI and SBEIII, while up-regulated the expression of SBEIV. Compared with SBEIV and SBEIII, the expression of SBEI gene in Zhefu 49 rice endosperms was more sensitive to temperature variation at the grain filling stage. This study indicates that changes in weather/climate conditions especially temperature stress influence rice grain formation and its quality as evidenced by isoform expression.
基金supported by the National High-Technology R&D Program of China(2006AA100107)the National Natural Science Foundation of China(30871573, 31160298)
文摘The sense and antisense fragments of the soluble starch synthase (SSII1) gene and the intron fragment of somatic embryogenesis receptor-like kinase (SERK1) gene were cloned from potato using PCR techniques. The RNAi plant expression vectors pBI-SSIII-RNAi and pBIC-SSIII-RNAi were constructed which containing fusion fragment of "sense fragment-intron-antisense fragment" driven by the constitutive expression promoter CaMV 35S and the tuber-specific expression promoter CIPP, respectively. The putative transgenic plants of potato cultivars Kexin-1 and Kexin-4 were obtained using Agrobacterium-mediated transformation method. PCR assay showed that the interference fragment of SSlll gene was integrated into potato genome. The RT-PCR analysis showed that the expression of SSlll gene was repressed apparently on the transcription level. Starch granules of the transgenic potato plants were different in morphology and became cracked in starch granule centre compared with the non-transgenic control plants. The amylose content of starch was increased by 2.68-29.05%, amylopectin to amylose ratio of starch had declined significantly, and the phosphorus content of the starch of the transgenic plants was reduced 9.94-58.36% compared with control plants. The results could provide certain foundation for improvement of potato starch quality.
基金supported by the National Natural Science Foundation of China (31230053)the Ministry of Education (MOE) of China and Agriculture and Agri-Food Canada (AAFC) Ph D Research Program
文摘Starch is the major carbohydrate in oat (Avena sativa L.) and starch formation requires the coordinated actions of several synthesis enzymes. In this study, the granule morphology, composition and physicochemical properties of oat starch, as well as the expressions of starch synthesis genes were investigated during oat endosperm development. Under the scanning electron microscopy (SEM), we observed that the unique compound granules were developed in oat endosperms at 10 days post anthesis (DPA) and then fragmented into irregular or polygonal simple granules from 12 DPA until seed maturity. The amylose content, branch chain length of degree of polymerization (DP=13-24), gelatinization temperature and percentage of retrogradation were gradually increased during the endosperm development; whereas the distribution of short chains (DP=6-12) were gradually decreased. The relative expressions of 4 classes of 13 starch synthesis genes characterized in this study indicated that three expression pattern groups were significantly different among gene classes as well as among varied isoforms, in which the first group of starch synthesis genes may play a key role on the initiation of starch synthesis in oat endosperms.
基金This work was supported by the National Key Research and Development Program of China(2017YFD0100201)the Project of Chongqing Science&Technology Commission Grants,China(CSTCCXLJRC201713and CSTC2016SHMS-ZTZx0017)and the Fundamental Research Funds for the Central Universities,China(XDJK2017C030).
文摘The rice mutant ossac4(starch accumulating 4)was raised from seeds of the rice(Oryza sativa L.)indica maintainer line Xinong 1B treated with ethyl methanesulfonate.The distal and medial portions of the second leaf displayed premature senescence in the ossac4 mutant at the four-leaf stage.Physiological and biochemical analysis,and cytological examination revealed that the ossac4 mutant exhibited the premature leaf senescence phenotype.At the four-leaf stage,the leaves of the ossac4 mutant exhibited significantly increased contents of starch compared with those of the wild type(WT).Quantitative real-time PCR analysis showed that the expression levels of photosynthesis-associated genes were down-regulated and the expression levels of glucose metabolism-associated genes were abnormal.Genetic analysis indicated that the ossac4 mutation was controlled by a single recessive nuclear gene.The OsSAC4 gene was localized to a 322.7-kb interval between the simple-sequence repeat marker XYH11-90 and the single-nucleotide polymorphism marker SNP5300 on chromosome 11.The target interval contained 20 annotated genes.The present results demonstrated that ossac4 represents a novel starch accumulation and premature leaf senescence mutant,and lays the foundation for cloning and functional analysis of OsSAC4.
基金Supported by the National Natural Science Foundation of China(31571575)the National Transgenic Major Project(2016ZX08002-003-04)+2 种基金the Second Million People Plan-Science and Technology Innovation Leader,the Scientific Innovation Talent for Henan Province(174100510002)the Program for Science&Technology Innovation Talents in Universities of Henan Province(15HASIT029)the Open Project Program of State Key Laboratory of Wheat and Maize Crop(SKL2014ZH-03)
文摘[Objective] During the filling stage of plant growth and development, storage starch is diurnally synthesized and accumulated in the grains from cereal crops, but the underlying molecular mechanism is unclear. [Method] In this study, grains from the bread wheat cultivar Zhoumai 18 grown in fields were harvested at 15 d after anthesis, and quantitative real-time reverse transcription polymerase chain reaction(qPCR) was used to measure the transcriptional levels of 26 genes encoding starch synthesis-related enzymes at 2 h intervals throughout a diurnal cycle. [Result] Our findings indicated that storage starch was persistently synthesized in wheat grains throughout a 24 h period. The diurnal patterns of the transcriptional levels of 26 genes in wheat grains were classified into two groups. The 13 genes in Group 1 were temporally and highly expressed in wheat grains,and their encoded proteins could play crucial roles in starch synthesis. The other 13 genes in Group 2 were characterized by low or no transcription in wheat grains throughout a diurnal cycle, suggesting their function in the synthesis or degradation of transitory starches in wheat grains. [Conclusion] These results provide information on the molecular mechanism of storage starch synthesis in higher plants.
基金Supported by National Natural Science Foundation of China(U1604110,U1404319,31600992,31801332)Key Project of Science and Technology in Henan Province(182102110442,152102110100,152102110036)+6 种基金Nanhu Scholars Program for Young Scholars of XYNU(2016054)Scientific Research Innovation Project for Postgraduate of XYNU(2018KYJJ47)Major Science and Technology Project in Henan Province(121100110200)Student Research Fund Project of XYNU(2018-DXS-066)National Innovation and Entrepreneurship Training Program for Undergraduates(201810477004)Key Scientific Research Projects of Universities in Henan Province(19A180030)Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
文摘Starch and the storage proteins are the main nutritious substances in crop grains,and their composition and content in grains play a decisive role in the grain quality of rice and other staple food crops.This review has mainly summarized the new advances in the expression regulation of starch and storage protein synthesis related genes in rice grains.Moreover,the challenges of the starch and storage protein synthesis substances in rice genetic improvement were also discussed.This review will provide important information for genetic improvement of grain quality in rice and,potentially,other staple cereals.
文摘Wild-type potato (Solanum tuberosum L.) plants and their transformants harboring agrobacterial rolB or rolC genes under control of the patatin class I promoter were cultured in vitro. These plants were used as a source of single-node stem cuttings. The structure of native starch in tubers formed on cuttings was determined using methods of X-ray scattering and differential scanning microcalorimetry (DSC). It was found that in starch from tubers of rolB plants the melting temperature of crystalline lamella was lower and their thickness was less than that in wild-type potato. In tubers of rolC plants starch differed from starch in wild-type plants by a higher melting temperature, reduced melting enthalpy, and a greater thickness of crystalline lamellae. The melting of starch from tubers of rolC plants proceeded as the melting of two independent crystalline structures with melting temperatures of 338.0°K and 342.8°K. Overall data show that starches of different structure can be obtained by using transgenic approach.
基金This research was supported by the National Natural Sciences Foundation(31670326)Technology Innovation and Application Development Program in Chongqing(cstc2019jscx-msxmX0353)Achievement Transfer Program of Institutions of Higher Education in Chongqing(KJZH17114)。
文摘The genetic diversity of 36 rice landraces and 43 breeding materials in the upper reaches of the Yangtze River in China was studied by intragenic molecular markers of 26 starch synthesis-related loci.And research on quality traits such as the amylose content(AC),gel consistency(GC)and alkali spreading value(ASV)to analyze genetic differences in quality traits.The results showed that the number of alleles,average gene diversity and polymorphism information content values of landraces were higher than those of breeding materials.The genetic similarity coefficient(GS)of 79 rice materials ranged from 0.392 to 1,with an average of 0.757.There were significant variations in the quality traits of rice landraces and breeding materials,and the high-quality compliance rates were low,only 6.3%of the varieties have an amylose content that reached grade 1.The results of cluster analysis and population structure analysis are generally consistent;that is,the two resource types are closely related and cannot be clustered independently.This study can provide a basis for genetic improvement of rice starch quality.Make full use of the quality genetic diversity of landraces in modern breeding work,further broaden the genetic base of rice and improve rice quality.
基金financial support they received from the National Key R&D Program of China(2020YFD1000300)the earmarked fund for China Agriculture Research System(CARS-24)the HighLevel Talent Support Plan(Lv-Yang-Jin-Feng),Yangzhou,China。
文摘To achieve the dual goals of high yield and good quality with low environmental costs,slow-release fertilizer(SRF)has been widely used in lotus cultivation as new type of fertilizer instead of traditional nitrogen fertilizer.However,the optimal amount of SRF and how it would promote lotus rhizome quality remain unclear.This study was designed to investigate the photosynthetic characteristics and the synthesis,accumulation,and physicochemical properties of lotus rhizome starches under six SRF levels(CK,S1,S2,S3,S4,and S5).Compared with CK(0 kg ha^(–1)),the net photosynthetic rate(P_(n))and SPAD values of leaves remained at higher levels under SRF treatment.Further research showed that SRF increased the lotus rhizome yield,the contents of amylose,amylopectin,and total starch,and the number of starch granules.Among the six SRF levels,S3(1035 kg ha^(–1))showed the greatest difference from CK and produced the highest levels.With the increasing SRF levels,the peak,hot and final viscosities decreased at first and then increased,but the setback viscosity and pasting temperature increased.In order to interpret these changes at the molecular level,the activities of key enzymes and relative expression levels of starch accumulation related genes were analyzed.Each of these parameters also increased under SRF treatment,especially under the S3 treatment.The results of this study show that SRF,especially S3(1035 kg ha^(–1)),is a suitable fertilizer option for lotus planting which can improve lotus rhizome quality by affecting starch accumulations related enzymes and genes.These results will be useful for SRF application to high-quality lotus rhizome production with low environmental costs.