This study investigates the properties of exciton-polaritons in a two-dimensional(2D)hybrid organic-inorganic perovskite microcavity in the presence of optical Stark effect.Through both steady and dynamic state analys...This study investigates the properties of exciton-polaritons in a two-dimensional(2D)hybrid organic-inorganic perovskite microcavity in the presence of optical Stark effect.Through both steady and dynamic state analyses,strong coupling between excitons of perovskite and cavity photons is revealed,indicating the formation of polaritons in the perovskite microcavity.Besides,it is found that an external optical Stark pulse can induce energy shifts of excitons proportional to the pulse intensity,which modifies the dispersion characteristics of the polaritons.展开更多
An advanced spectral diagnostic system was developed to measure the electron temperature(T_(e)),electron density(N_(e)),and ion temperature(T_(i))of the Huazhong University of Science and Technology field-reversed con...An advanced spectral diagnostic system was developed to measure the electron temperature(T_(e)),electron density(N_(e)),and ion temperature(T_(i))of the Huazhong University of Science and Technology field-reversed configuration plasma.The system consists of an optic fiber spectrometer with a wide spectral band and a 670 mm focal length high throughout Czerny-Turner monochromator equipped with both a 3600 g mm^(-1)grating and a 2400 g mm^(-1)grating to measure the line spectrum.Accompanying these components is an electronmultiplying charge-coupled device camera to capture spectral data.The relative intensity of the optical fiber spectrometer was calibrated using a standard luminance source,and the wavelength calibration of the spectrometer was accomplished using a Hg/Ar lamp.This diagnostic setup was configured to measure electron density based on the Stark effect of H_γ(n=5→n=2;434.04 nm).Doppler broadening of an OⅢ(2s^(2)2p(^(2)P^(0))3p→2s^(2)2p(^(2)P^(0))3s;375.988 nm)emission line was measured and analyzed to obtain the ion temperature,and electron temperatures were estimated from the relative strength of H_(β)(n=4→n=2;486.14 nm)(D_(β))and H_(γ)(D_(γ))spectral lines when the electron density was obtained from Stark effect measurements.The initial experimental results indicate that the highest electron temperature of the formation region was approximately 8 eV,the electron density of the colliding-and-merging region was approaching 10^(20)m^(-3),and the ion temperature reached about 40 eV.展开更多
We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as l...We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.展开更多
Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external...Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W.展开更多
The implementation of scalable quantum networks requires photons at the telecom band and long-lived spin coherence.The single Er^(3+) in solid-state hosts is an important candidate that fulfills these critical require...The implementation of scalable quantum networks requires photons at the telecom band and long-lived spin coherence.The single Er^(3+) in solid-state hosts is an important candidate that fulfills these critical requirements simultaneously.However,to entangle distant Er^(3+) ions through photonic connections,the emission frequency of individual Er^(3+) in solid-state matrix must be the same,which is challenging because the emission frequency of Er^(3+) depends on its local environment.Herein,we propose and experimentally demonstrate the Stark tuning of the emission frequency of a single Er^(3+) in a Y_(2)SiO_(5) crystal by employing electrodes interfaced with a silicon photonic crystal cavity.We obtain a Stark shift of 182.9±0.8 MHz,which is approximately 27 times of the optical emission linewidth,demonstrating promising applications in tuning the emission frequency of independent Er^(3+) into the same spectral channels.Our results provide a useful solution for construction of scalable quantum networks based on single Er^(3+) and a universal tool for tuning emission of individual rare-earth ions.展开更多
We established the passive-visible spectroscopy diagnostics(P-VSD)and active-VSD(A-VSD)spectral splitting models for the HL-2A tokamak.Spectral splitting due to the influence of electromagnetic fields on the spectra i...We established the passive-visible spectroscopy diagnostics(P-VSD)and active-VSD(A-VSD)spectral splitting models for the HL-2A tokamak.Spectral splitting due to the influence of electromagnetic fields on the spectra in VSD is studied.Zeeman splitting induced by the magnetic field(B)is used to distinguish reflected light overlap in the divertor for P-VSD.Stark splitting caused by the Lorentz electric field(E_(Lorentz))from the neutral beam injection particle’s interaction with the magnetic field(V_(beam)×B)is used to measure the safety factor q profile for A-VSD.We give a comparison and error analysis by fitting the experimental spectra with the simulation results.The distinguishing of edge(scrape-off layer and divertor)hydrogen/deuterium spectral lines and the q profile derived from the spectra provides a reference for HL-2M VSD.展开更多
A new multi-channel motional Stark effect(MSE)diagnostic system has been developed on the upgraded EAST tokamak,which was installed on the port C to observe a tangential neutral beam.A telecentric imaging lens was dep...A new multi-channel motional Stark effect(MSE)diagnostic system has been developed on the upgraded EAST tokamak,which was installed on the port C to observe a tangential neutral beam.A telecentric imaging lens was deployed to ensure uniform illumination from the core to the boundary.A square fiber head which contained 23 fiber bundles was mounted to this imaging lens;each fiber bundle contained 19 fibers and two of them were assigned to CXRS and BES spectrometer,respectively.The angle tuning method was used for matching the Doppler shift of theσcomponent’s wavelength which was caused by the beam voltage.At the present stage,the MSE system only contains ten channels that would be extended to 23 channels in the future,covering a measurement range from R=1.8 to R=2.27 m with a temporal resolution of 10 ms and a spatial resolution of3 cm.The polarization angle-constrained q profiles and current density profiles were reconstructed with EFIT equilibrium reconstructions.In the sawtooth discharges,the q=1 surface position was validated by the ECE signals,which further verified the rationality of the MSE measurement.展开更多
The mixed-field effect at the hyperfine level of the rovibronic ground state of the^(127)I^(79)Br(X^(1)Σ,v=0,J=0)molecule is computed on the J-I uncoupled basis of|JM_(J)I_(1)M_(1)I_(2)M_(2)>,where J is the molecu...The mixed-field effect at the hyperfine level of the rovibronic ground state of the^(127)I^(79)Br(X^(1)Σ,v=0,J=0)molecule is computed on the J-I uncoupled basis of|JM_(J)I_(1)M_(1)I_(2)M_(2)>,where J is the molecular total angular momentum excluding nuclear spin,M_J is the projection number of J,I_(1) and I_(2) are the nuclear spins of the iodine and bromine atoms,and M_(1) and M_(2) are the projection numbers of I_(1) and I_(2),respectively.When the two applied electric and magnetic fields are parallel,the perturbations are rare and only one perturbation is observed in a relatively large field regime in our computation range.However,when the two fields are off-parallel,the perturbations increase significantly and some sublevels show the Feshbach-like resonance phenomenon.Therefore,such sublevels transit between weak-field seeking and strong-field seeking repeatedly,which can be utilized to enhance or suppress cold molecular collision and chemical reaction rates.Such behavior of the molecular hyperfine structure in the mixed off-parallel fields may also be utilized to construct an electric-field-assisted anti-Helmholtz magnetic trap for cold molecules and to realize evaporative cooling of cold molecules(sub-mK)into the ultracold regime(μK).展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974071 and 62375040)the Sichuan Science and Technology Program(Grant Nos.2022ZYD0108 and 2023JDRC0030).
文摘This study investigates the properties of exciton-polaritons in a two-dimensional(2D)hybrid organic-inorganic perovskite microcavity in the presence of optical Stark effect.Through both steady and dynamic state analyses,strong coupling between excitons of perovskite and cavity photons is revealed,indicating the formation of polaritons in the perovskite microcavity.Besides,it is found that an external optical Stark pulse can induce energy shifts of excitons proportional to the pulse intensity,which modifies the dispersion characteristics of the polaritons.
基金supported by National Natural Science Foundation of China(Nos.2017YFE0301804,2017YFE0301803)Technology Innovation Platform Project of Wuhan(No.20200766)。
文摘An advanced spectral diagnostic system was developed to measure the electron temperature(T_(e)),electron density(N_(e)),and ion temperature(T_(i))of the Huazhong University of Science and Technology field-reversed configuration plasma.The system consists of an optic fiber spectrometer with a wide spectral band and a 670 mm focal length high throughout Czerny-Turner monochromator equipped with both a 3600 g mm^(-1)grating and a 2400 g mm^(-1)grating to measure the line spectrum.Accompanying these components is an electronmultiplying charge-coupled device camera to capture spectral data.The relative intensity of the optical fiber spectrometer was calibrated using a standard luminance source,and the wavelength calibration of the spectrometer was accomplished using a Hg/Ar lamp.This diagnostic setup was configured to measure electron density based on the Stark effect of H_γ(n=5→n=2;434.04 nm).Doppler broadening of an OⅢ(2s^(2)2p(^(2)P^(0))3p→2s^(2)2p(^(2)P^(0))3s;375.988 nm)emission line was measured and analyzed to obtain the ion temperature,and electron temperatures were estimated from the relative strength of H_(β)(n=4→n=2;486.14 nm)(D_(β))and H_(γ)(D_(γ))spectral lines when the electron density was obtained from Stark effect measurements.The initial experimental results indicate that the highest electron temperature of the formation region was approximately 8 eV,the electron density of the colliding-and-merging region was approaching 10^(20)m^(-3),and the ion temperature reached about 40 eV.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334020 and 11927810)the National Key Research and Development Program of China(Grant No.2022YFB3904001).
文摘We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.
基金Project supported by the National Natural Science Foundation of China (Grant No.12274045)。
文摘Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0304100)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301200)+2 种基金the National Natural Science Foundation of China(Grant Nos.12222411 and 11821404)partially carried out at the USTC Center for Micro and Nanoscale Research and Fabricationthe support from the Youth Innovation Promotion Association CAS。
文摘The implementation of scalable quantum networks requires photons at the telecom band and long-lived spin coherence.The single Er^(3+) in solid-state hosts is an important candidate that fulfills these critical requirements simultaneously.However,to entangle distant Er^(3+) ions through photonic connections,the emission frequency of individual Er^(3+) in solid-state matrix must be the same,which is challenging because the emission frequency of Er^(3+) depends on its local environment.Herein,we propose and experimentally demonstrate the Stark tuning of the emission frequency of a single Er^(3+) in a Y_(2)SiO_(5) crystal by employing electrodes interfaced with a silicon photonic crystal cavity.We obtain a Stark shift of 182.9±0.8 MHz,which is approximately 27 times of the optical emission linewidth,demonstrating promising applications in tuning the emission frequency of independent Er^(3+) into the same spectral channels.Our results provide a useful solution for construction of scalable quantum networks based on single Er^(3+) and a universal tool for tuning emission of individual rare-earth ions.
基金the National Key Research and Development Program of China(No.2019YFE03020004)National Natural Science Foundation of China(No.12175228).
文摘We established the passive-visible spectroscopy diagnostics(P-VSD)and active-VSD(A-VSD)spectral splitting models for the HL-2A tokamak.Spectral splitting due to the influence of electromagnetic fields on the spectra in VSD is studied.Zeeman splitting induced by the magnetic field(B)is used to distinguish reflected light overlap in the divertor for P-VSD.Stark splitting caused by the Lorentz electric field(E_(Lorentz))from the neutral beam injection particle’s interaction with the magnetic field(V_(beam)×B)is used to measure the safety factor q profile for A-VSD.We give a comparison and error analysis by fitting the experimental spectra with the simulation results.The distinguishing of edge(scrape-off layer and divertor)hydrogen/deuterium spectral lines and the q profile derived from the spectra provides a reference for HL-2M VSD.
基金supported by the National MCF Energy R&D Program of China(No.2019YFE03040000)National Natural Science Foundation of China(Nos.12075280 and 11805236)+2 种基金Anhui Provincial Natural Science Foundation(No.1908085J01)CAS President’s International Fellowship Initiative(No.2022VMB0007)Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)。
文摘A new multi-channel motional Stark effect(MSE)diagnostic system has been developed on the upgraded EAST tokamak,which was installed on the port C to observe a tangential neutral beam.A telecentric imaging lens was deployed to ensure uniform illumination from the core to the boundary.A square fiber head which contained 23 fiber bundles was mounted to this imaging lens;each fiber bundle contained 19 fibers and two of them were assigned to CXRS and BES spectrometer,respectively.The angle tuning method was used for matching the Doppler shift of theσcomponent’s wavelength which was caused by the beam voltage.At the present stage,the MSE system only contains ten channels that would be extended to 23 channels in the future,covering a measurement range from R=1.8 to R=2.27 m with a temporal resolution of 10 ms and a spatial resolution of3 cm.The polarization angle-constrained q profiles and current density profiles were reconstructed with EFIT equilibrium reconstructions.In the sawtooth discharges,the q=1 surface position was validated by the ECE signals,which further verified the rationality of the MSE measurement.
基金Project supported by the National Natural Science Foundation of China (Grant No.12004199)。
文摘The mixed-field effect at the hyperfine level of the rovibronic ground state of the^(127)I^(79)Br(X^(1)Σ,v=0,J=0)molecule is computed on the J-I uncoupled basis of|JM_(J)I_(1)M_(1)I_(2)M_(2)>,where J is the molecular total angular momentum excluding nuclear spin,M_J is the projection number of J,I_(1) and I_(2) are the nuclear spins of the iodine and bromine atoms,and M_(1) and M_(2) are the projection numbers of I_(1) and I_(2),respectively.When the two applied electric and magnetic fields are parallel,the perturbations are rare and only one perturbation is observed in a relatively large field regime in our computation range.However,when the two fields are off-parallel,the perturbations increase significantly and some sublevels show the Feshbach-like resonance phenomenon.Therefore,such sublevels transit between weak-field seeking and strong-field seeking repeatedly,which can be utilized to enhance or suppress cold molecular collision and chemical reaction rates.Such behavior of the molecular hyperfine structure in the mixed off-parallel fields may also be utilized to construct an electric-field-assisted anti-Helmholtz magnetic trap for cold molecules and to realize evaporative cooling of cold molecules(sub-mK)into the ultracold regime(μK).