V0405 Dra is a W UMa-type binary star.Based on the TESS data,we have conducted an orbital period study and performed a light curve analysis for the system.The orbital period study reveals that the O-C curve for V0405 ...V0405 Dra is a W UMa-type binary star.Based on the TESS data,we have conducted an orbital period study and performed a light curve analysis for the system.The orbital period study reveals that the O-C curve for V0405 Dra exhibits secular decrease at an extremely high rate of d P/dt=-2.71×10^(-6)day year^(-1),along with periodic variations characterized by an amplitude of A_(3)=0.0032 day and a period of P_(3)=1.413 years.The orbital periodic change is possibly due to the light-travel time effect resulting from an additional third body in the system,for which we estimate a minimum mass of M_(3)=0.77M_(⊙).By employing the 2013 version of the Wilson-Devinney(W-D)method to synthesize a light curve,we derived photometric solutions indicating that V0405 Dra is a new deep(f=68.7%)and low-mass ratio(q=0.175)contact binary.The fast decrease in its orbital period is likely caused by mass transfer from the more massive primary star to the less massive secondary star,or due to angular momentum loss.With further mass transfer and loss of angular momentum,the binary will gradually evolve into a tighter contact configuration,eventually leading to a merger into a single star,following the evolutionary paths suggested for such deep and low mass ratio contact binaries.展开更多
The light curve analyses and orbital period variations for two contact binary stars,LS Del and V997 Cyg,are presented in this work which was conducted in the frame of the Binary Systems of South and North project Grou...The light curve analyses and orbital period variations for two contact binary stars,LS Del and V997 Cyg,are presented in this work which was conducted in the frame of the Binary Systems of South and North project Ground-based photometric observations were performed at two observatories in France.We used the Transiting Exoplanet Survey Satellite(TESS)data for extracting times of minima and light curve analysis of the targe systems.The O-C diagram for both systems displays a parabolic trend.LS Del and V997 Cyg’s orbital periods are increasing at rates of dP/dt=7.20×10^(-08)days yr^(-1)and dP/dt=2.54×10^(-08)days yr^(-1),respectively Therefore,it can be concluded that mass is being transferred from the less massive star to the more massive component with a rate of dM/dt=-1.96×10^(-7)M_(⊙)yr^(-1)for the LS Del system,and dM/dt=-3.83×10^(-7)M_(⊙)yr-1for V997 Cyg.The parameters of a third possible object in the system are also considered.The PHysics Of Eclipsing BinariEs Python code was used to analyze the light curves.The light curve solutions needed a cold starspot due to the asymmetry in the LS Del system’s light curve maxima.The mass ratio fill-out factor,and star temperature all indicate that both systems are contact binary types in this investigation.Two methods were applied to estimate the absolute parameters of the systems:one method relied on the parallax of Gaia DR3,and the other used a P-M relationship.The positions of the systems are also depicted on the M-L,M-R q-L_(ratio),and logM_(tot)-logJ_(0)diagrams.We recommend that further observations and investigations be done on the existence of a fourth body in this system.展开更多
New V-band CCD observations of variable star V2455 Cyg were performed during two nights in September 2017. According to all times of maximum light and new maxima, the O-C curve was analyzed.The period changes of V2455...New V-band CCD observations of variable star V2455 Cyg were performed during two nights in September 2017. According to all times of maximum light and new maxima, the O-C curve was analyzed.The period changes of V2455 Cyg were investigated and the rate of increasing period was obtained to be(1/P) d P/dt = 1.99 × 10^-7 yr-1. Frequency analysis indicated that V2455 Cyg pulsates with the radial p mode and the fundamental frequency is 10.61574 d-1. Physical parameters of V2455 Cyg at mean temperature were determined(e.g., R = 2.52 R⊙and M = 1.92 M⊙). The position of this star in the H-R diagram confirms that V2455 Cyg is a high amplitude δ Scuti star.展开更多
The star 1-1-42 (=vZ1390), a cluster member in M3, located near the red edge of the instability strip of the horizontal branch, was discovered by Roberts and Sandage as a low amplitude variable, it was designated as...The star 1-1-42 (=vZ1390), a cluster member in M3, located near the red edge of the instability strip of the horizontal branch, was discovered by Roberts and Sandage as a low amplitude variable, it was designated as V204 in the "second catalogue of variable stars in globular clusters", but its coordinates given in all versions of this catalogue are wrong since 1955. We argue that V204 is indeed a low amplitude HB variable star, located near to the red edge of the instability strip, with a period of 0.74785d and an amplitude of about 0.04 mag in V. We also find that the red cluster member star 1-1-39 is a low amplitude variable with a period of 1.16^d and amplitude of about 0.03 mag in V which might be pulsating at the second overtone.展开更多
Long-term BVRI photometric light curves of the pre-main sequence stars V977 Cep and V982 Cep during the period from 2000 October to 2016 August are presented. The stars are located in the vicinity of the reflection ne...Long-term BVRI photometric light curves of the pre-main sequence stars V977 Cep and V982 Cep during the period from 2000 October to 2016 August are presented. The stars are located in the vicinity of the reflection nebula NGC 7129. Our photometric data show that both stars exhibit strong photometric variability in all optical passbands, which is typical for Classical T Tauri stars. Using our observational data we analyze the reasons for the observed brightness variations. In the case of V977 Cep we identify previously unknown periodicity in its light curve.展开更多
Photometric observations are presented in V and I bands of six eclipsing binaries at the lower limit of the orbital periods for W UMa stars. Three of them are newly discovered eclipsing systems. The light curve soluti...Photometric observations are presented in V and I bands of six eclipsing binaries at the lower limit of the orbital periods for W UMa stars. Three of them are newly discovered eclipsing systems. The light curve solutions reveal that all shortperiod targets are contact or overcontact binaries and six new binaries are added to the family of short-period systems with estimated parameters. Four binaries have com- ponents that are equal in size and a mass ratio near 1. The phase variability shown by the V-I colors of all targets may be explained by lower temperatures on their back surfaces than those on their side surfaces. Five systems exhibit the O'Connell effect that can be modeled by cool spots on the side surfaces of their primary components. The light curves of V1067 Her in 2011 and 2012 are fitted by diametrically opposite spots. Applying the criteria for subdivision of W UMa stars to our targets leads to ambiguous results.展开更多
The first multiband photometric solutions of the short-period V Gru eclipsing binary from the southern hemisphere are presented in this study.Light curves of the system were observed through BVI filters at the Congari...The first multiband photometric solutions of the short-period V Gru eclipsing binary from the southern hemisphere are presented in this study.Light curves of the system were observed through BVI filters at the Congarinni Observatory in Australia for 15 nights.In addition to the new ground-based data,we also used the TESS observations in two sectors.We analyzed the light curves of the system using the PHysics Of Eclipsing BinariEs(PHOEBE)2.4.7 version code to achieve the best accordance with the photometric observations.The solutions suggest that V Gru is a near-contact binary system with q=1.302(81)mass ratio,f_(1)=0.010(23),f_(2)=-0.0.009(21),and i=73.45(38).We considered the two hot spots on the hotter and cooler components for the light curve analysis.We extracted the minima times from the light curves based on the Markov Chain Monte Carlo(MCMC)approach.Using our new light curves,TESS,and additional literature minima,we computed the ephemeris of V Gru.The system’s eclipse timing variation trend was determined using the MCMC method.This system is a good and challenging case for future studies.展开更多
Dust extinction law is crucial to recover the intrinsic energy distribution of celestial objects and infer the characteristics of interstellar dust.Based on the traditional pair method,an improved pair method is propo...Dust extinction law is crucial to recover the intrinsic energy distribution of celestial objects and infer the characteristics of interstellar dust.Based on the traditional pair method,an improved pair method is proposed to model the dust extinguished spectral energy distribution(SED)of an individual star.Instead of the mathematically parameterizing extinction curves,the extinction curves in this work are directly from the silicate-graphite dust model,so that the dust extinction law can be obtained and the dust properties can be analyzed simultaneously.The ATLAS9 stellar model atmosphere is adopted for the intrinsic SEDs in this work,while the silicate-graphite dust model with a dust size distribution of dn da~a^(-a)exp(-a a_(c)),0.005<a<5μmfor each component is adopted for the model extinction curves.One typical extinction tracer in the dense region(V410 Anon9)and one in the diffuse region(Cyg OB2#12)of the Milky Way are chosen to test the reliability and the practicability of the improved pair method in different stellar environments.The results are consistent with their interstellar environments and are in agreement with the previous observations and studies,which prove that the improved pair method is effective and applicable in different stellar environments.In addition to the reliable extinction results,the derived parameters in the dust model can be used to analyze the dust properties,which cannot be achieved by other methods with the mathematical extinction models.With the improved pair method,the stellar parameters can also be inferred and the extinction law beyond the wavelengths of observed data can be predicted based on the dust model as well.展开更多
We present photometric observations in Sloan filters g′, i′of the eclipsing W UMa stars USNOA2.0 1350-17365531, V471 Cas, V479 Lac and V560 Lac. The sinusoidal-like O-C diagram of V471 Cas indicates the presence of ...We present photometric observations in Sloan filters g′, i′of the eclipsing W UMa stars USNOA2.0 1350-17365531, V471 Cas, V479 Lac and V560 Lac. The sinusoidal-like O-C diagram of V471 Cas indicates the presence of a third body with mass 0.12 M_⊙(a red dwarf) at distance 897 R_⊙. The O-C diagram of V479 Lac reveals a period decrease of d P/dt =-1.69 × 10-6d yr-1. The results of the light curve solutions are:(i) the targets are overcontact binaries with small fill-out factors;(ii) their components are F–K stars, comparable in size, whose temperature differences are below 80 K;(iii) all targets undergo partial eclipses and to limit the possible mass ratios we carried out two-step q-search analysis. The target global parameters(luminosities, radii, masses) were obtained on the basis of their Gaia distances and the results of our light curve solutions. The obtained total mass of V560 Lac turns out to be smaller than the lower mass limit for presently known W UMa binaries of 1.0-1.2 M_⊙, i.e. this target is a peculiar overcontact system.展开更多
New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn...New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn and V354 UMa are asymmetric.Therefore,a hot spot was added on the primary star of FP Lyn and a dark spot was added on the secondary star of V354 UMa.At the same time,we added a third light to the photometric solution of FP Lyn for the final result.The obtained mass ratios and fill-out factors are q = 1.153 and f = 13.4% for FP Lyn,q = 1.075 and f = 4.6% for FV CVn,and q = 3.623 and f = 10.7% for V354 UMa respectively.The investigations of orbital period for these three systems indicate that the periods are variable.FP Lyn and V354 UMa were discovered to have secularly increasing components with rates of dp/dt = 4.19 ×10^-7 dyr^-1 and dp/dt = 7.70 ×10^-7 dyr^-1 respectively,which are feasibly caused by conservative mass transfer from the less massive component to the more massive component.In addition,some variable components were discovered for FV CVn,including a rate of dp/dt =-1.13 ×10^-6 dyr^-1 accompanied by a cyclic oscillation with amplitude and period of 0.0069 d and 10.65 yr respectively.The most likely explanation for the long-term decrease is angular momentum loss.The existence of an additional star is the most plausible explanation for the periodic variation.展开更多
High-precision CCD photometric observations of the contact binary V680 Per were obtained in2016.Its symmetric multi-color light curves were analyzed by using the Wilson–Devinney(2013)program.These photometric solutio...High-precision CCD photometric observations of the contact binary V680 Per were obtained in2016.Its symmetric multi-color light curves were analyzed by using the Wilson–Devinney(2013)program.These photometric solutions suggest that V680 Per is an A-type W UMa contact binary with the mass ratio of q=0.693 and a fill-out factor of f=18.84%with a small temperature difference of 101 K.Based on all minimum times,the O-C curve was analyzed for the first time in this study.A cyclic oscillation(A3=0.00093 d,T3=4.92 yr)superimposed on a secular decrease(d P/dt=-8.16×10-8 d yr-1)was identified.The continuous decrease in period is possibly a result of mass transfer from the more massive component to the less massive one,or angular momentum loss due to a magnetic stellar wind.Because of this secular decrease,it is predicted that the degree of contact will become higher,and V680 Per will evolve into a deeper overcontact binary.展开更多
Nova Sco 2008 (=V1309 Sco) is an example of a V838 Mon type eruption rather than a typical classical nova. This enigmatic object was recently shown to have resulted from the merger of two stars in a contact binary. ...Nova Sco 2008 (=V1309 Sco) is an example of a V838 Mon type eruption rather than a typical classical nova. This enigmatic object was recently shown to have resulted from the merger of two stars in a contact binary. It is the first stellar merger that was identified to be undergoing a common envelope transient. To understand the properties of its binary progenitor, the pre-outburst light curves were analyzed by using the W-D method. The photometric solution of the 2002 light curve shows that it is a deep contact binary (f = 89.5(~40.5)%) with a mass ratio of 0.094. The asymmetry of the light curve is explained by the presence of a dark spot on the more massive component. The extremely high fill-out factor suggests that the merging of the contact binary is driven by dynamical mass loss from the outer Lagrange point. However, the analysis of the 2004 light curve indicates that no solutions were obtained even at an extremely low mass ratio of q = 0.03. This suggests that the common convective envelope of the binary system disappeared and the secondary component spiraled into the envelope of the primary in 2004. Finally, the ejection of the envelope of the primary produced the outburst.展开更多
New multi-color BVRcIc photometric observations are presented for the W UMa type eclips- ing binary V1073 Cyg. The multi-color light curve analysis with the Wilson-Devinney procedure yielded the absolute parameters of...New multi-color BVRcIc photometric observations are presented for the W UMa type eclips- ing binary V1073 Cyg. The multi-color light curve analysis with the Wilson-Devinney procedure yielded the absolute parameters of this system, showing that V 1073 Cyg is a shallow contact binary system with a fill-out factor f = 0.124(±0.011). We collected all available times of light minima spanning 119yr, including CCD data to construct the O - C curve, and performed detailed O - C analysis. The O - C diagram shows that the period change is complex. A long-term continuous decrease and a cyclic vari- ation exist. The period is decreasing at a rate ofP = -1.04(±0.18) × 10-10 d cycle-land, with the period decrease, V1073 Cyg will evolve to the deep contact stage. The cyclic variation with a period of P3 = 82.7(±3.6) yr and an amplitude of A = 0.028(±0.002) d may be explained by magnetic activ- ity of one or both components or the light travel time effect caused by a distant third companion with M3(i1 = 90°) = 0.511 M⊙.展开更多
A photometric analysis and evolutionary stages of the contact binary V2790 Ori are presented.The BV RC observations were carried out at the Thai National Observatory. The photometric light curves were fitted to provid...A photometric analysis and evolutionary stages of the contact binary V2790 Ori are presented.The BV RC observations were carried out at the Thai National Observatory. The photometric light curves were fitted to provide fundamental parameters, required to examine evolutionary stages of the binary. The results indicate that V2790 Ori is a W-type contact system with a mass ratio of q = 2.932. The orbital period increase is found at a rate of d P/dt = 1.03×10^-7 d yr^-1. This implies that a rate of mass transfer from the secondary component to the primary one is dm2/dt =6.31×10^-8 M⊙yr^-1. Furthermore, we find that from the detached phase to the contact phase, the amount of mass that the evolved secondary component has lost is 1.188±0.110 M⊙, i.e., mass lost by the system is 0.789±0.073 M⊙and mass transfer to the primary is0.399±0.037 M⊙. Since the time of the first overflow, the angular momentum loss is found to be 72.2% of JFOF, causing the orbit and Roche surface to shrink until the present time.展开更多
By analyzing two sets of complete BV Rc Ic light curves for V342 UMa and three sets of complete BV Rc Ic light curves for V509 Cam, we determined that the two systems are both W-subtype contact binaries and that V342 ...By analyzing two sets of complete BV Rc Ic light curves for V342 UMa and three sets of complete BV Rc Ic light curves for V509 Cam, we determined that the two systems are both W-subtype contact binaries and that V342 UMa manifests a shallow contact configuration, while V509 Cam exhibits a medium contact configuration. Given that both of them are totally eclipsing binaries, the physical parameters derived only by the photometric light curves are reliable. Meanwhile, the period changes of the two targets were analyzed based on all available eclipsing times. We discovered that V342 UMa shows long-term period decrease with a rate of-1.02(±0.54)× 10^-7 d yr^-1 and that V509 Cam displays long-term period increase with a rate of 3.96(±0.90)× 10^-8 d yr^-1. Both the conservative mass transfer and angular momentum loss via magnetic stellar winds can be used to interpret the long-term period decrease of V342 UMa. The longterm period increase of V509 Cam can be explained by mass transfer from the less massive star to the more massive one. The absolute parameters of the two binaries were estimated according to their Gaia distances and our derived photometric solution results. This method can be extended to other contact binaries without radial velocities but with reliable photometric solutions. Their evolutionary states were investigated and we found that they reveal properties that are identical to other W-subtype contact systems.展开更多
This paper presents the results of a model analysis of optical spectra and determination of the parameters of three individual SU UMa and WZ Sge type dwarf novae.The moderate resolution spectra of TY Psc,FL Psc and V4...This paper presents the results of a model analysis of optical spectra and determination of the parameters of three individual SU UMa and WZ Sge type dwarf novae.The moderate resolution spectra of TY Psc,FL Psc and V455 And were obtained at the 6-m BTA of the SAO RAS in the low state of these systems with the determination of white dwarf radiation.The theoretical spectra were calculated using the grid models of hydrogen dwarf atmospheres of white dwarfs by varying the parameters(T_(eff) and log g) to reach the best agreement with the observed ones.We highlight different effects of the parameters on the shape and intensity of the HI lines.Therefore,it is possible to unambiguously determine T_(eff) and log g from the analysis of observations.The fundamental parameters of white dwarfs(M and R) were found by comparing the parameters of atmospheres with theoretical models of the internal structure.The obtained parameters of the primaries of TY Psc,FL Psc and V455 And are consistent with the average values for SU UMa and WZ Sge systems.As a result,we demonstrate the efficiency of the method for determining the parameters of such systems based on the analysis of a limited set of observed optical spectra.展开更多
Intensive photometric and spectral observations of the variable star V2551 Cyg are presented.The light curve shape reveals that the target is a pulsating star, contrary to its previous classification as an eclipsing b...Intensive photometric and spectral observations of the variable star V2551 Cyg are presented.The light curve shape reveals that the target is a pulsating star, contrary to its previous classification as an eclipsing binary. The period and amplitude of the light curve, the amplitudes of color changes and the radial velocity curve of V2551 Cyg are similar to those of a high-amplitude δ Scuti variable. The target seems to pulsate with the fundamental mode. However, V2551 Cyg exhibits several important peculiarities:(i) the decreasing branch of its light curve is steeper than the increasing one;(ii) the radial velocity curve has a flat section in the phase range 0.7-1.2 and short increase of the negative radial velocity at phase 0.7;(iii) the rotational velocity is quite big for a HADS star;(iv) the Fourier coefficients of V2551 Cyg are quite different from those of HADS stars. The target classification is difficult due to these peculiarities.展开更多
Results from UBVRI optical photometric observations of the pre-main se- quence star V350 Cep during the period 2004-2014 are presented. The star was dis- covered in 1977 due to its remarkable increase in brightness by...Results from UBVRI optical photometric observations of the pre-main se- quence star V350 Cep during the period 2004-2014 are presented. The star was dis- covered in 1977 due to its remarkable increase in brightness by more than 5 mag (R). In previous studies, V350 Cep was considered to be a potential FUor or EXor eruptive variable. Our data suggest that during the period of observations the star maintains its maximum brightness with low amplitude photometric variations. Our conclusion is that V350 Cep was probably an intermediate object between FUors and EXors, similar to V1647 Ori.展开更多
Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previo...Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previous investigators, it is determined that the O'Connell effect on the light curves has disappeared. By analyzing those multi-color light curves with the Wilson-Devinney code(W-D code),it is discovered that V1853 Ori is an A-type intermediate-contact binary with a degree of contact factor of f = 33.3%(3.7%) and a mass ratio of q = 0.1896(0.0013). Combining our 10 newly determined times of light minima together with others published in the literature, the period changes of the system are investigated. We found that the general trend of the observed minus calculated(O-C) curve shows a downward parabolic variation that corresponds to a long-term decrease in the orbital period with a rate of d P/dt =-1.96(0.46)×10^(-7) d yr^(-1). The long-term period decrease could be explained by mass transfer from the more-massive component to the less-massive one. By combining our photometric solutions with data from Gaia DR_2, absolute parameters were derived as M_1 = 1.20 M⊙, M_2 = 0.23 M⊙, R_1 = 1.36 R⊙and R_2 = 0.66 R⊙. The long-term period decrease and intermediate-contact configuration suggest that V1853 Ori will evolve into a high fill-out overcontact binary.展开更多
We present an analysis of the optical observations of Herbig Ae/Be(HAeBe)star V1686 Cyg,which is associated with a small isolated star-forming region around HAeBe star BD+40?4124.We observed this star as a part of our...We present an analysis of the optical observations of Herbig Ae/Be(HAeBe)star V1686 Cyg,which is associated with a small isolated star-forming region around HAeBe star BD+40?4124.We observed this star as a part of our project investigating young eruptive stars.Observations were conducted on the 2.6-m telescope of Byurakan Observatory from 2015 to 2017.In this period,we obtained direct images of V1686 Cyg and 14 medium-and low-resolution spectra.In the course of observations,we noticed that this star underwent an atypical brightness outburst.After data reduction,we found that the full rise and decline in the brightness of V1686 Cyg had an amplitude of almost 3 magnitudes and lasted about 3 months.We were also able to track changes in the stellar spectrum during the outburst,which are correlated with the photometric variations.展开更多
基金supported by the Joint Research Fund in Astronomy(grant No.U1631108)under a cooperative agreement between the National Natural Science Foundation of China(NSFC)the Chinese Academy of Sciences(CAS)the Chinese National Natural Science Foundation of China(NSFC,grant No.12103030)。
文摘V0405 Dra is a W UMa-type binary star.Based on the TESS data,we have conducted an orbital period study and performed a light curve analysis for the system.The orbital period study reveals that the O-C curve for V0405 Dra exhibits secular decrease at an extremely high rate of d P/dt=-2.71×10^(-6)day year^(-1),along with periodic variations characterized by an amplitude of A_(3)=0.0032 day and a period of P_(3)=1.413 years.The orbital periodic change is possibly due to the light-travel time effect resulting from an additional third body in the system,for which we estimate a minimum mass of M_(3)=0.77M_(⊙).By employing the 2013 version of the Wilson-Devinney(W-D)method to synthesize a light curve,we derived photometric solutions indicating that V0405 Dra is a new deep(f=68.7%)and low-mass ratio(q=0.175)contact binary.The fast decrease in its orbital period is likely caused by mass transfer from the more massive primary star to the less massive secondary star,or due to angular momentum loss.With further mass transfer and loss of angular momentum,the binary will gradually evolve into a tighter contact configuration,eventually leading to a merger into a single star,following the evolutionary paths suggested for such deep and low mass ratio contact binaries.
基金project was supported by the Scientific Research Projects Coordination Unit of Erciyes University(project number FBA-2022-11737)the TESS mission is provided by the NASA Explorer Program。
文摘The light curve analyses and orbital period variations for two contact binary stars,LS Del and V997 Cyg,are presented in this work which was conducted in the frame of the Binary Systems of South and North project Ground-based photometric observations were performed at two observatories in France.We used the Transiting Exoplanet Survey Satellite(TESS)data for extracting times of minima and light curve analysis of the targe systems.The O-C diagram for both systems displays a parabolic trend.LS Del and V997 Cyg’s orbital periods are increasing at rates of dP/dt=7.20×10^(-08)days yr^(-1)and dP/dt=2.54×10^(-08)days yr^(-1),respectively Therefore,it can be concluded that mass is being transferred from the less massive star to the more massive component with a rate of dM/dt=-1.96×10^(-7)M_(⊙)yr^(-1)for the LS Del system,and dM/dt=-3.83×10^(-7)M_(⊙)yr-1for V997 Cyg.The parameters of a third possible object in the system are also considered.The PHysics Of Eclipsing BinariEs Python code was used to analyze the light curves.The light curve solutions needed a cold starspot due to the asymmetry in the LS Del system’s light curve maxima.The mass ratio fill-out factor,and star temperature all indicate that both systems are contact binary types in this investigation.Two methods were applied to estimate the absolute parameters of the systems:one method relied on the parallax of Gaia DR3,and the other used a P-M relationship.The positions of the systems are also depicted on the M-L,M-R q-L_(ratio),and logM_(tot)-logJ_(0)diagrams.We recommend that further observations and investigations be done on the existence of a fourth body in this system.
基金supported by the Department of Physics,Payame Noor University,Tehran,Iran。
文摘New V-band CCD observations of variable star V2455 Cyg were performed during two nights in September 2017. According to all times of maximum light and new maxima, the O-C curve was analyzed.The period changes of V2455 Cyg were investigated and the rate of increasing period was obtained to be(1/P) d P/dt = 1.99 × 10^-7 yr-1. Frequency analysis indicated that V2455 Cyg pulsates with the radial p mode and the fundamental frequency is 10.61574 d-1. Physical parameters of V2455 Cyg at mean temperature were determined(e.g., R = 2.52 R⊙and M = 1.92 M⊙). The position of this star in the H-R diagram confirms that V2455 Cyg is a high amplitude δ Scuti star.
文摘The star 1-1-42 (=vZ1390), a cluster member in M3, located near the red edge of the instability strip of the horizontal branch, was discovered by Roberts and Sandage as a low amplitude variable, it was designated as V204 in the "second catalogue of variable stars in globular clusters", but its coordinates given in all versions of this catalogue are wrong since 1955. We argue that V204 is indeed a low amplitude HB variable star, located near to the red edge of the instability strip, with a period of 0.74785d and an amplitude of about 0.04 mag in V. We also find that the red cluster member star 1-1-39 is a low amplitude variable with a period of 1.16^d and amplitude of about 0.03 mag in V which might be pulsating at the second overtone.
基金supported partly by funds of the project‘Multicolor photometric study of Pre-main sequence stars from selected star-forming regions’financed by Fund for Scientific Research of the Bulgarian Ministry of Education and Scienceuse of NASA’s Astrophysics Data System Abstract Service+2 种基金the SIMBAD database and the Vizie R catalogue access tool,operated at CDS,Strasbourg,Francefunded by the National Aeronautics and Space Administration and the National Science Foundation(Skrutskie et al.2006)supported partly by funds from the project RD-08-81 at the University of Shumen
文摘Long-term BVRI photometric light curves of the pre-main sequence stars V977 Cep and V982 Cep during the period from 2000 October to 2016 August are presented. The stars are located in the vicinity of the reflection nebula NGC 7129. Our photometric data show that both stars exhibit strong photometric variability in all optical passbands, which is typical for Classical T Tauri stars. Using our observational data we analyze the reasons for the observed brightness variations. In the case of V977 Cep we identify previously unknown periodicity in its light curve.
基金partly supported by funds provided by projects RD 02-263 administered by the Scientific Foundation of Shumen Universitya joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology+1 种基金funded by the National Aeronautics and Space Administrationthe National Science Foundation
文摘Photometric observations are presented in V and I bands of six eclipsing binaries at the lower limit of the orbital periods for W UMa stars. Three of them are newly discovered eclipsing systems. The light curve solutions reveal that all shortperiod targets are contact or overcontact binaries and six new binaries are added to the family of short-period systems with estimated parameters. Four binaries have com- ponents that are equal in size and a mass ratio near 1. The phase variability shown by the V-I colors of all targets may be explained by lower temperatures on their back surfaces than those on their side surfaces. Five systems exhibit the O'Connell effect that can be modeled by cool spots on the side surfaces of their primary components. The light curves of V1067 Her in 2011 and 2012 are fitted by diametrically opposite spots. Applying the criteria for subdivision of W UMa stars to our targets leads to ambiguous results.
基金The National Science Foundation(NSF 1517474,1909109)the National Aeronautics and Space Administration(NASA 17ADAP17-68)both contributed funding to PHOEBE that we utilized。
文摘The first multiband photometric solutions of the short-period V Gru eclipsing binary from the southern hemisphere are presented in this study.Light curves of the system were observed through BVI filters at the Congarinni Observatory in Australia for 15 nights.In addition to the new ground-based data,we also used the TESS observations in two sectors.We analyzed the light curves of the system using the PHysics Of Eclipsing BinariEs(PHOEBE)2.4.7 version code to achieve the best accordance with the photometric observations.The solutions suggest that V Gru is a near-contact binary system with q=1.302(81)mass ratio,f_(1)=0.010(23),f_(2)=-0.0.009(21),and i=73.45(38).We considered the two hot spots on the hotter and cooler components for the light curve analysis.We extracted the minima times from the light curves based on the Markov Chain Monte Carlo(MCMC)approach.Using our new light curves,TESS,and additional literature minima,we computed the ephemeris of V Gru.The system’s eclipse timing variation trend was determined using the MCMC method.This system is a good and challenging case for future studies.
基金supported by the National Natural Science Foundation of China(NSFC)through grant Nos.12133002,U2031209 and 12203025Shandong Provincial Natural Science Foundation through project ZR2022QA064the CSST Milky Way and Nearby Galaxies Survey on Dust and Extinction Project CMS-CSST2021-A09。
文摘Dust extinction law is crucial to recover the intrinsic energy distribution of celestial objects and infer the characteristics of interstellar dust.Based on the traditional pair method,an improved pair method is proposed to model the dust extinguished spectral energy distribution(SED)of an individual star.Instead of the mathematically parameterizing extinction curves,the extinction curves in this work are directly from the silicate-graphite dust model,so that the dust extinction law can be obtained and the dust properties can be analyzed simultaneously.The ATLAS9 stellar model atmosphere is adopted for the intrinsic SEDs in this work,while the silicate-graphite dust model with a dust size distribution of dn da~a^(-a)exp(-a a_(c)),0.005<a<5μmfor each component is adopted for the model extinction curves.One typical extinction tracer in the dense region(V410 Anon9)and one in the diffuse region(Cyg OB2#12)of the Milky Way are chosen to test the reliability and the practicability of the improved pair method in different stellar environments.The results are consistent with their interstellar environments and are in agreement with the previous observations and studies,which prove that the improved pair method is effective and applicable in different stellar environments.In addition to the reliable extinction results,the derived parameters in the dust model can be used to analyze the dust properties,which cannot be achieved by other methods with the mathematical extinction models.With the improved pair method,the stellar parameters can also be inferred and the extinction law beyond the wavelengths of observed data can be predicted based on the dust model as well.
基金supported partly by project DN08/20 of the Scientific Foundation of the Bulgarian Ministry of Education and Scienceby project RD 08-142 of Shumen University+1 种基金the support of the private IRIDA Observatory operated remotely(www.iridaobservatory.org)Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement
文摘We present photometric observations in Sloan filters g′, i′of the eclipsing W UMa stars USNOA2.0 1350-17365531, V471 Cas, V479 Lac and V560 Lac. The sinusoidal-like O-C diagram of V471 Cas indicates the presence of a third body with mass 0.12 M_⊙(a red dwarf) at distance 897 R_⊙. The O-C diagram of V479 Lac reveals a period decrease of d P/dt =-1.69 × 10-6d yr-1. The results of the light curve solutions are:(i) the targets are overcontact binaries with small fill-out factors;(ii) their components are F–K stars, comparable in size, whose temperature differences are below 80 K;(iii) all targets undergo partial eclipses and to limit the possible mass ratios we carried out two-step q-search analysis. The target global parameters(luminosities, radii, masses) were obtained on the basis of their Gaia distances and the results of our light curve solutions. The obtained total mass of V560 Lac turns out to be smaller than the lower mass limit for presently known W UMa binaries of 1.0-1.2 M_⊙, i.e. this target is a peculiar overcontact system.
基金financial support from the Universidad Nacional Aut ónoma de México (UNAM) and DGAPA (PAPIIT IN 100918)supported by the National Natural Science Foundation of China (NSFC) (No. 11703016)+3 种基金by the Joint Research Fund in Astronomy (No. U1431105)by the Natural Science Foundation of Shandong Province (No. ZR2014AQ019)by the Young Scholars Program of Shandong University, Weihai (No. 20820171006)by the Open Research Program of Key Laboratory for the Structure and Evolution of Celestial Objects (No. OP201704)
文摘New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn and V354 UMa are asymmetric.Therefore,a hot spot was added on the primary star of FP Lyn and a dark spot was added on the secondary star of V354 UMa.At the same time,we added a third light to the photometric solution of FP Lyn for the final result.The obtained mass ratios and fill-out factors are q = 1.153 and f = 13.4% for FP Lyn,q = 1.075 and f = 4.6% for FV CVn,and q = 3.623 and f = 10.7% for V354 UMa respectively.The investigations of orbital period for these three systems indicate that the periods are variable.FP Lyn and V354 UMa were discovered to have secularly increasing components with rates of dp/dt = 4.19 ×10^-7 dyr^-1 and dp/dt = 7.70 ×10^-7 dyr^-1 respectively,which are feasibly caused by conservative mass transfer from the less massive component to the more massive component.In addition,some variable components were discovered for FV CVn,including a rate of dp/dt =-1.13 ×10^-6 dyr^-1 accompanied by a cyclic oscillation with amplitude and period of 0.0069 d and 10.65 yr respectively.The most likely explanation for the long-term decrease is angular momentum loss.The existence of an additional star is the most plausible explanation for the periodic variation.
基金supported by the Joint Research Found(Nos.U1831109 and U1631108)in Astronomy under cooperative agreement between the National Natural Science Foundation of China(NSFC)and Chinese Academy of Sciences(CAS)the Science Foundation of China University of Petroleum-Beijing at Karamay(Nos.RCYJ 2016B-03-004 and 2016B-03-006)Key Laboratory for the Structure and Evolution ofCelestial Objects,Chinese Academy of Sciences(No.OP201708)。
文摘High-precision CCD photometric observations of the contact binary V680 Per were obtained in2016.Its symmetric multi-color light curves were analyzed by using the Wilson–Devinney(2013)program.These photometric solutions suggest that V680 Per is an A-type W UMa contact binary with the mass ratio of q=0.693 and a fill-out factor of f=18.84%with a small temperature difference of 101 K.Based on all minimum times,the O-C curve was analyzed for the first time in this study.A cyclic oscillation(A3=0.00093 d,T3=4.92 yr)superimposed on a secular decrease(d P/dt=-8.16×10-8 d yr-1)was identified.The continuous decrease in period is possibly a result of mass transfer from the more massive component to the less massive one,or angular momentum loss due to a magnetic stellar wind.Because of this secular decrease,it is predicted that the degree of contact will become higher,and V680 Per will evolve into a deeper overcontact binary.
基金supported by the National Natural Science Foundation of China(Nos.11133007,11325315 and 11573063)the Key Research Program of the Chinese Academy of Sciences(Grant No.KGZD-EW-603)+1 种基金the Science Foundation of Yunnan Province(Nos.2012HC011 and 2013FB084)the Strategic Priority Research Program“The Emergence of Cosmological Structures”of the Chinese Academy of Sciences(No.XDB09010202)
文摘Nova Sco 2008 (=V1309 Sco) is an example of a V838 Mon type eruption rather than a typical classical nova. This enigmatic object was recently shown to have resulted from the merger of two stars in a contact binary. It is the first stellar merger that was identified to be undergoing a common envelope transient. To understand the properties of its binary progenitor, the pre-outburst light curves were analyzed by using the W-D method. The photometric solution of the 2002 light curve shows that it is a deep contact binary (f = 89.5(~40.5)%) with a mass ratio of 0.094. The asymmetry of the light curve is explained by the presence of a dark spot on the more massive component. The extremely high fill-out factor suggests that the merging of the contact binary is driven by dynamical mass loss from the outer Lagrange point. However, the analysis of the 2004 light curve indicates that no solutions were obtained even at an extremely low mass ratio of q = 0.03. This suggests that the common convective envelope of the binary system disappeared and the secondary component spiraled into the envelope of the primary in 2004. Finally, the ejection of the envelope of the primary produced the outburst.
基金partly supported by the National Natural Science Foundation of China(Nos.11573063,11325315 and U1631108)the Key Science Foundation of Yunnan Province(No.2017FA001)+1 种基金Chinese Academy of Sciences“Light of West China”Programthe research fund of Sichuan University of Science and Engineering(Grant No.2015RC42)
文摘New multi-color BVRcIc photometric observations are presented for the W UMa type eclips- ing binary V1073 Cyg. The multi-color light curve analysis with the Wilson-Devinney procedure yielded the absolute parameters of this system, showing that V 1073 Cyg is a shallow contact binary system with a fill-out factor f = 0.124(±0.011). We collected all available times of light minima spanning 119yr, including CCD data to construct the O - C curve, and performed detailed O - C analysis. The O - C diagram shows that the period change is complex. A long-term continuous decrease and a cyclic vari- ation exist. The period is decreasing at a rate ofP = -1.04(±0.18) × 10-10 d cycle-land, with the period decrease, V1073 Cyg will evolve to the deep contact stage. The cyclic variation with a period of P3 = 82.7(±3.6) yr and an amplitude of A = 0.028(±0.002) d may be explained by magnetic activ- ity of one or both components or the light travel time effect caused by a distant third companion with M3(i1 = 90°) = 0.511 M⊙.
文摘A photometric analysis and evolutionary stages of the contact binary V2790 Ori are presented.The BV RC observations were carried out at the Thai National Observatory. The photometric light curves were fitted to provide fundamental parameters, required to examine evolutionary stages of the binary. The results indicate that V2790 Ori is a W-type contact system with a mass ratio of q = 2.932. The orbital period increase is found at a rate of d P/dt = 1.03×10^-7 d yr^-1. This implies that a rate of mass transfer from the secondary component to the primary one is dm2/dt =6.31×10^-8 M⊙yr^-1. Furthermore, we find that from the detached phase to the contact phase, the amount of mass that the evolved secondary component has lost is 1.188±0.110 M⊙, i.e., mass lost by the system is 0.789±0.073 M⊙and mass transfer to the primary is0.399±0.037 M⊙. Since the time of the first overflow, the angular momentum loss is found to be 72.2% of JFOF, causing the orbit and Roche surface to shrink until the present time.
基金supported by the National Natural Science Foundation of China (No. 11703016)the Joint Research Fund in Astronomy (No. U1431105) under cooperative agreement between the National Natural Science Foundation of China and the Chinese Academy of Sciences+5 种基金the program of the Light in China’s Western Region (No. 2015-XBQNA-02)the Natural Science Foundation of Shandong Province (Nos. ZR2014AQ019 and JQ201702)the Young Scholars Program of Shandong University, Weihai (Nos. 20820162003 and 20820171006)the program of Tianshan Youth (No. 2017Q091)the Open Research Program of Key Laboratory for the Structure and Evolution of Celestial Objects (No. OP201704)partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences
文摘By analyzing two sets of complete BV Rc Ic light curves for V342 UMa and three sets of complete BV Rc Ic light curves for V509 Cam, we determined that the two systems are both W-subtype contact binaries and that V342 UMa manifests a shallow contact configuration, while V509 Cam exhibits a medium contact configuration. Given that both of them are totally eclipsing binaries, the physical parameters derived only by the photometric light curves are reliable. Meanwhile, the period changes of the two targets were analyzed based on all available eclipsing times. We discovered that V342 UMa shows long-term period decrease with a rate of-1.02(±0.54)× 10^-7 d yr^-1 and that V509 Cam displays long-term period increase with a rate of 3.96(±0.90)× 10^-8 d yr^-1. Both the conservative mass transfer and angular momentum loss via magnetic stellar winds can be used to interpret the long-term period decrease of V342 UMa. The longterm period increase of V509 Cam can be explained by mass transfer from the less massive star to the more massive one. The absolute parameters of the two binaries were estimated according to their Gaia distances and our derived photometric solution results. This method can be extended to other contact binaries without radial velocities but with reliable photometric solutions. Their evolutionary states were investigated and we found that they reveal properties that are identical to other W-subtype contact systems.
基金supported by the Ministry of Science and Higher Education of the Russian Federationfinancial support from the RFBR and the Government of the RT in the framework of scientific projects 18–42–160003funded by the subsidy 671–2020–0052 allocated to KFU for assignment in scientific activities。
文摘This paper presents the results of a model analysis of optical spectra and determination of the parameters of three individual SU UMa and WZ Sge type dwarf novae.The moderate resolution spectra of TY Psc,FL Psc and V455 And were obtained at the 6-m BTA of the SAO RAS in the low state of these systems with the determination of white dwarf radiation.The theoretical spectra were calculated using the grid models of hydrogen dwarf atmospheres of white dwarfs by varying the parameters(T_(eff) and log g) to reach the best agreement with the observed ones.We highlight different effects of the parameters on the shape and intensity of the HI lines.Therefore,it is possible to unambiguously determine T_(eff) and log g from the analysis of observations.The fundamental parameters of white dwarfs(M and R) were found by comparing the parameters of atmospheres with theoretical models of the internal structure.The obtained parameters of the primaries of TY Psc,FL Psc and V455 And are consistent with the average values for SU UMa and WZ Sge systems.As a result,we demonstrate the efficiency of the method for determining the parameters of such systems based on the analysis of a limited set of observed optical spectra.
基金supported partly by project DN 08/20 of the Fund for Scientific Research of the Bulgarian Ministry of Education and Scienceproject RD 08-102 of Shumen University
文摘Intensive photometric and spectral observations of the variable star V2551 Cyg are presented.The light curve shape reveals that the target is a pulsating star, contrary to its previous classification as an eclipsing binary. The period and amplitude of the light curve, the amplitudes of color changes and the radial velocity curve of V2551 Cyg are similar to those of a high-amplitude δ Scuti variable. The target seems to pulsate with the fundamental mode. However, V2551 Cyg exhibits several important peculiarities:(i) the decreasing branch of its light curve is steeper than the increasing one;(ii) the radial velocity curve has a flat section in the phase range 0.7-1.2 and short increase of the negative radial velocity at phase 0.7;(iii) the rotational velocity is quite big for a HADS star;(iv) the Fourier coefficients of V2551 Cyg are quite different from those of HADS stars. The target classification is difficult due to these peculiarities.
基金supported by ESF and the Bulgarian Ministry of Education and Science under the contract BG051PO001-3.3.06-0047
文摘Results from UBVRI optical photometric observations of the pre-main se- quence star V350 Cep during the period 2004-2014 are presented. The star was dis- covered in 1977 due to its remarkable increase in brightness by more than 5 mag (R). In previous studies, V350 Cep was considered to be a potential FUor or EXor eruptive variable. Our data suggest that during the period of observations the star maintains its maximum brightness with low amplitude photometric variations. Our conclusion is that V350 Cep was probably an intermediate object between FUors and EXors, similar to V1647 Ori.
基金supported by the National Natural Science Foundation of China (No. 11503077)
文摘Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previous investigators, it is determined that the O'Connell effect on the light curves has disappeared. By analyzing those multi-color light curves with the Wilson-Devinney code(W-D code),it is discovered that V1853 Ori is an A-type intermediate-contact binary with a degree of contact factor of f = 33.3%(3.7%) and a mass ratio of q = 0.1896(0.0013). Combining our 10 newly determined times of light minima together with others published in the literature, the period changes of the system are investigated. We found that the general trend of the observed minus calculated(O-C) curve shows a downward parabolic variation that corresponds to a long-term decrease in the orbital period with a rate of d P/dt =-1.96(0.46)×10^(-7) d yr^(-1). The long-term period decrease could be explained by mass transfer from the more-massive component to the less-massive one. By combining our photometric solutions with data from Gaia DR_2, absolute parameters were derived as M_1 = 1.20 M⊙, M_2 = 0.23 M⊙, R_1 = 1.36 R⊙and R_2 = 0.66 R⊙. The long-term period decrease and intermediate-contact configuration suggest that V1853 Ori will evolve into a high fill-out overcontact binary.
基金supported by the RA MES State Committee of Science,in the frame of the research project number 18T-1C-329。
文摘We present an analysis of the optical observations of Herbig Ae/Be(HAeBe)star V1686 Cyg,which is associated with a small isolated star-forming region around HAeBe star BD+40?4124.We observed this star as a part of our project investigating young eruptive stars.Observations were conducted on the 2.6-m telescope of Byurakan Observatory from 2015 to 2017.In this period,we obtained direct images of V1686 Cyg and 14 medium-and low-resolution spectra.In the course of observations,we noticed that this star underwent an atypical brightness outburst.After data reduction,we found that the full rise and decline in the brightness of V1686 Cyg had an amplitude of almost 3 magnitudes and lasted about 3 months.We were also able to track changes in the stellar spectrum during the outburst,which are correlated with the photometric variations.