In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar mas...In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.展开更多
In this paper, we use the well-known Hartle’s perturbation method in order to compute models of differentially rotating neutron stars obeying realistic equations of state. In our numerical treatment, we keep terms up...In this paper, we use the well-known Hartle’s perturbation method in order to compute models of differentially rotating neutron stars obeying realistic equations of state. In our numerical treatment, we keep terms up to third order in the angular velocity. We present indicative numerical results for models satisfying a particular differential rotation law. We emphasize on computing the change in mass owing to this differential rotation law.展开更多
We implement the so-called “complex-plane strategy” for computing general-relativistic polytropic models of uniformly rotating neutron stars. This method manages the problem by performing all numerical integrations,...We implement the so-called “complex-plane strategy” for computing general-relativistic polytropic models of uniformly rotating neutron stars. This method manages the problem by performing all numerical integrations, required within the framework of Hartle’s perturbation method, in the complex plane. We give emphasis on computing corrections up to third order in the angular velocity, and the mass-shedding limit. We also compute the angular momentum, moment of inertia, rotational kinetic energy, and gravitational potential energy of the models considered.展开更多
We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic me...We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that j ~ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M 〉 0.5 MG. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) -- 0.42(f/fK)2 + 0.48(f/fK)z is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.展开更多
A neutron star(NS)has many extreme physical conditions,and one may obtain some important information about an NS via accreting neutron star binary(ANSB)systems.The upcoming Chinese Space Station Telescope(CSST)provide...A neutron star(NS)has many extreme physical conditions,and one may obtain some important information about an NS via accreting neutron star binary(ANSB)systems.The upcoming Chinese Space Station Telescope(CSST)provides an opportunity to search for a large sample of ANSB candidates.Our goal is to check the completeness of the potential ANSB samples from CSST data.In this paper,we generate some ANSBs and normal binaries under the CSST photometric system by binary evolution and binary population synthesis method and use a machine learning method to train a classification model.Although the Precision(94.56%)of our machine learning model is as high as before study,the Recall is only about 63.29%.The Precision/Recall is mainly determined by the mass transfer rate between the NSs and their companions.In addition,we also find that the completeness of ANSB samples from CSST photometric data by the machine learning method also depends on the companion mass and the age of the system.ANSB candidates with a low initial mass companion star(0.1 M_(⊙)to 1 M_(⊙))have a relatively high Precision(94.94%)and high Recall(86.32%),whereas ANSB candidates with a higher initial mass companion star(1.1 M_(⊙)to 3 M_(⊙))have similar Precision(93.88%)and quite low Recall(42.67%).Our results indicate that although the machine learning method may obtain a relatively pure sample of ANSBs,a completeness correction is necessary for one to obtain a complete sample.展开更多
Research by one of the authors suggested that the critical mass of constant-density neutron stars will be greater than eight solar masses when the majority of their neutrons group into bosons that form a Bose-Einstein...Research by one of the authors suggested that the critical mass of constant-density neutron stars will be greater than eight solar masses when the majority of their neutrons group into bosons that form a Bose-Einstein condensate, provided the bosons interact with each other and have scattering lengths on the order of a picometer. That analysis was able to use Newtonian theory for the condensate with scattering lengths on this order, but general relativity provides a more fundamental analysis. In this paper, we determine the equilibrium states of a static, spherically-symmetric variable-density mixture of a degenerate gas of noninteracting neutrons and a Bose-Einstein condensate using general relativity. We use a Klein-Gordan Lagrangian density with a Gross-Pitaevskii term for the condensate and an effective field for the neutrons. We show that a new class of compact stars can exist with masses above the Oppenheimer-Volkoff limit, provided the scattering length of the bosons is large enough. These stars have no internal singularities, obey causality, and demonstrate a quantum mechanism consistent with general relativity that could prevent collapsed stars from becoming black holes.展开更多
We report an indication (3.22 or) of ≈ 1860 Hz quasi-periodic oscillations from a neutron star low-mass X-ray binary 4U 1636-536. If confirmed, this will be by far the highest frequency feature observed from an acc...We report an indication (3.22 or) of ≈ 1860 Hz quasi-periodic oscillations from a neutron star low-mass X-ray binary 4U 1636-536. If confirmed, this will be by far the highest frequency feature observed from an accreting neutron star system, and hence could be very useful in understanding such systems. This plausible timing feature was observed simultaneously with lower (≈ 585 Hz) and upper (≈ 904 Hz) kilohertz quasi-periodic oscillations. The two kilohertz quasi-periodic oscillation frequencies had a ratio of ≈ 1.5, and the frequency of the alleged ≈ 1860 Hz feature was close to the triple and the double values of these frequencies. This can be useful for constraining the models of all the three features. In particular, the ≈ 1860Hz feature could be (1) from a new and heretofore unknown class of quasi-periodic oscillations, or (2) the first observed overtone of lower or upper kilohertz quasi-periodic oscillations. Finally, we note that, although the relatively low significance of the ≈ 1860 Hz feature argues for caution, even a 3.22 σ feature at such a uniquely high frequency should be interesting enough to spur a systematic search in the archival data, as well as to scientifically motivate sufficiently large timing instruments for the next generation X-ray missions.展开更多
LIGO-Virgo has observed the gravitational waves(GWs)from the coalescence of binary black hole(BBH)and binary neutron star(BNS)during O1 and O2,and the ones from NS-BH are expected to be hunted in the operating O3 run....LIGO-Virgo has observed the gravitational waves(GWs)from the coalescence of binary black hole(BBH)and binary neutron star(BNS)during O1 and O2,and the ones from NS-BH are expected to be hunted in the operating O3 run.The population properties and mass distribution of NS-BH mergers are poorly understood now,thus researchers simulated their chirp mass(M)distribution by a synthetic model,in which the BHs and NSs were inferred by LIGO-Virgo(O1/O2),and obtained the values in the range of 2.1 M_(⊙)<M<7.3 M_(⊙).In this paper,we further simulate the GW frequency(fGW)distribution of NS-BH mergers by the above-stated synthetic model,with a basic binary system model through the Monte Carlo method.Our results predict that the median with 90%credible intervals is 165+475-64 Hz in the case of Schwarzschild BH when the system just before merger,and this GW frequency is expected to increase several times in the merger stage,which is lying in the frequency band of LIGO-Virgo,i.e.,about 15 Hz to a few kHz.Our results provide an important reference for hunting the NS-BH mergers by the on-going O3 run of LIGO-Virgo.展开更多
Accreting neutron star binary(ANSB)systems can provide some important information about neutron stars(NSs),especially on the structure and the equation of state of NSs.However,only a few ANSBs are known so far.The upc...Accreting neutron star binary(ANSB)systems can provide some important information about neutron stars(NSs),especially on the structure and the equation of state of NSs.However,only a few ANSBs are known so far.The upcoming Chinese Space Station Telescope(CSST)provides an opportunity to search for a large number of ANSB candidates.We aim to investigate whether or not a machine learning method may efficiently search for ANSBs based on CSST photometric system.In this paper,we generate some ANSBs and normal binaries under CSST photometric system by binary evolution and binary population synthesis method and use a machine learning method to train a classification model.We consider the classical multi-color disk and the irradiated accretion disk,then compare their effects on the classification results.We find that no matter whether the X-ray reprocessing effect is included or not,the machine learning classification accuracy is always very high,i.e.,higher than 96%.If a significant magnitude difference exists between the accretion disk and the companion of an ANSB,machine learning may not distinguish it from some normal stars such as massive main sequence stars,white dwarf binaries,etc.False classifications of the ANSBs and the normal stars highly overlap in a color–color diagram.Our results indicate that machine learning would be a powerful way to search for potential ANSB candidates from the CSST survey.展开更多
Our bimetric spacetime model of glitching pulsars is applied to the remnant of GW170817. Accordingly, pulsars are born with embryonic incompressible superconducting gluon-quark superfluid cores (SuSu-matter) that are ...Our bimetric spacetime model of glitching pulsars is applied to the remnant of GW170817. Accordingly, pulsars are born with embryonic incompressible superconducting gluon-quark superfluid cores (SuSu-matter) that are embedded in Minkowski spacetime, whereas the ambient compressible and dissipative media (CDM) are imbedded in curved spacetime. As pulsars cool down, the equilibrium between both spacetime is altered, thereby triggering the well-observed glitch phenomena. Based thereon and assuming all neutron stars (<em>NSs</em>) to be born with the same initial mass of <img src="Edit_4d2d9e5f-812f-41d7-9422-5cfb3fc10997.bmp" alt="" />, we argue that the remnant of GW170817 should be a relatively faint <em>NS</em> with a massive central core made of SuSu-matter. The effective mass and radius of the remnant are predicted to be <img src="Edit_6702e3a8-abff-41f9-a45b-a2bc1e6c61b0.bmp" alt="" /> and <span style="white-space:nowrap;"><em>R</em><sub><em>rem</em></sub>=10.764 Km</span>, whereas the mass of the enclosed SuSu-core is <img src="Edit_6fe43fca-e33b-45a6-b846-bd7a09d4b8dd.bmp" alt="" />. Here, about 1/2<em>M</em><sub><em>core</em></sub> is an energy enhancement triggered by the phase transition of the gluon-quark-plasma from the microscopic into macroscopic scale. The current compactness of the remnant is <img src="Edit_38ced5f8-6f72-44d8-a3c9-89c2eaf73e0e.bmp" alt="" />, but predicted to increase as the CDM and cools down, rendering the remnant an invisible dark energy object, and therefore to an excellent black hole candidate.展开更多
We study the origin of the UV-excess in star clusters by performing N-body simulations of six clusters with N = 10 k and N = 100 k(single stars & binary systems) and metallicities of Z = 0.01, 0.001 and 0.0001, us...We study the origin of the UV-excess in star clusters by performing N-body simulations of six clusters with N = 10 k and N = 100 k(single stars & binary systems) and metallicities of Z = 0.01, 0.001 and 0.0001, using PETAR. All models initially have a 50% primordial binary fraction. Using Galev NB we convert the simulated data into synthetic spectra and photometry for the China Space Station Telescope(CSST) and Hubble Space Telescope(HST). From the spectral energy distributions we identify three stellar populations that contribute to the UVexcess:(1) second asymptotic giant branch stars, which contribute to the UV flux at early times;(2) naked helium stars and(3) white dwarfs, which are long-term contributors to the FUV spectra. Binary stars consisting of a white dwarf and a main sequence star are cataclysmic variable(CV) candidates. The magnitude distribution of CV candidates is bimodal up to 2 Gyr. The bright CV population is particularly bright in FUV-NUV. The FUV-NUV color of our model clusters is 1–2 mag redder than the UV-excess globular clusters in M87 and in the Milky Way. This discrepancy may be induced by helium enrichment in observed clusters. Our simulations are based on simple stellar evolution;we do not include the effects of variations in helium and light elements or multiple stellar populations. A positive radial color gradient is present in CSST NUV-y for main sequence stars in all models with a color difference of 0.2–0.5 mag, up to 4 half-mass radii. The CSST NUV-g color correlates strongly with HST FUV-NUV for NUV-g > 1 mag, with the linear relation FUV-NUV =(1.09 ± 0.12) ×(NUV-g) +(-1.01 ± 0.22). This allows for conversion of future CSST NUV-g colors into HST FUV-NUV colors, which are sensitive to UV-excess features. We find that CSST will be able to detect UVexcess in Galactic/extragalactic star clusters with ages >200 Myr.展开更多
We analyzed the spectral properties and pulse profile of PSR J1811-1925,a pulsar located in the center of composite supernova remnant(SNR)G11.2-0.3,by using high timing resolution archival data from the Nuclear Spectr...We analyzed the spectral properties and pulse profile of PSR J1811-1925,a pulsar located in the center of composite supernova remnant(SNR)G11.2-0.3,by using high timing resolution archival data from the Nuclear Spectroscopic Telescope Array Mission(NuSTAR).Analysis of archival Chandra data over different regions rules out the SNR shell as the site of the hard X-ray emission while spectral analysis indicates that the NuSTAR photons originate in the pulsar and its nebula.The pulse profile exhibits a broad single peak up to 35 keV.The jointed spectrum by combining NuSTAR and Chandra can be well fitted by a power-law model with a photon index ofΓ=1.58±0.04.The integrated flux of jointed spectrum over 1-10 keV is 3.36×10^(-12)erg cm^(-2)s^(-1).The spectrum of pulsar having photon indexΓ=1.33±0.06 and a 1-10 keV flux of 0.91×10^(-12)erg cm^(-2)s^(-1).We also performed the phase-resolved spectral analysis by splitting the whole pulse-on phase into five phase bins.The photon indices of the bins are all around 1.4,indicating that the photon index does not evolve with the phase.展开更多
Recent studies have suggested that type lax supernovae(SNe lax) are likely to result from a weak deflagration explosion of a Chandrasekhar-mass white dwarf in a binary system with a helium(He)-star companion.Assuming ...Recent studies have suggested that type lax supernovae(SNe lax) are likely to result from a weak deflagration explosion of a Chandrasekhar-mass white dwarf in a binary system with a helium(He)-star companion.Assuming that most SNe Iax are produced from this scenario,in this work we extend our previous work on the threedimensional hydrodynamical simulation of ejecta-companion interaction by taking the orbital and spin velocities of the progenitor system into account.We then follow the post-impact evolution of a surviving He-star companion by using the one-dimensional stellar evolution code MESA.We aim to investigate the post-explosion rotation properties of a He-star companion in SNe Iax.We find that the He-star companion spins down after the impact due to the angular-momentum loss and expansion caused by the mass-stripping and shock heating during the interaction.This leads to the situation where the surface rotational speed of the surviving companion can drop to one-third of its pre-explosion value when it expands to a maximum radius a few years after the impact.Subsequently,the star shrinks and spins up again once the deposited energy is released.This spin-switching feature of the surviving He-star companions of SNe Iax may be useful for the identification of such objects in future observations.展开更多
In this paper, we have investigated the structural properties of rotating neutron stars using the numerical RNS code and equations of state which have been calculated within the lowest order constrained variational(L...In this paper, we have investigated the structural properties of rotating neutron stars using the numerical RNS code and equations of state which have been calculated within the lowest order constrained variational(LOCV)approach. In order to calculate the equation of state of nuclear matter, we have used UV(14) +TNI and AV(18) potentials.We have computed the maximum mass of the neutron star and the corresponding equatorial radius at different angular velocities. We have also computed the structural properties of Keplerian rotating neutron stars for the maximum mass configuration, MK, RK, fK and jmax.展开更多
文摘In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.
文摘In this paper, we use the well-known Hartle’s perturbation method in order to compute models of differentially rotating neutron stars obeying realistic equations of state. In our numerical treatment, we keep terms up to third order in the angular velocity. We present indicative numerical results for models satisfying a particular differential rotation law. We emphasize on computing the change in mass owing to this differential rotation law.
文摘We implement the so-called “complex-plane strategy” for computing general-relativistic polytropic models of uniformly rotating neutron stars. This method manages the problem by performing all numerical integrations, required within the framework of Hartle’s perturbation method, in the complex plane. We give emphasis on computing corrections up to third order in the angular velocity, and the mass-shedding limit. We also compute the angular momentum, moment of inertia, rotational kinetic energy, and gravitational potential energy of the models considered.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11175108, U1432119, 1146114100, 11205075, 11375076 and 11475104)the Shandong Natural Science Foundation (Grant No. ZR2014AQ012)the Young Scholars Program of Shandong University, Weihai (Grant No. 2015WHWLJH01)
文摘We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that j ~ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M 〉 0.5 MG. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) -- 0.42(f/fK)2 + 0.48(f/fK)z is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.
基金supported by the National Natural Science Foundation of China(Nos.12288102 and 12333008)the National Key R&D Program of China(No.2021YFA1600403)+3 种基金support from the International Centre of Supernovae,Yunnan Key Laboratory(No.202302AN360001)the Yunnan Revitalization Talent Support Program-Science&Technology Champion Project(No.202305AB350003)the Yunnan Fundamental Research Projects(Nos.202401BC070007 and 202201B C070003)the science research grants from the China Manned Space Project。
文摘A neutron star(NS)has many extreme physical conditions,and one may obtain some important information about an NS via accreting neutron star binary(ANSB)systems.The upcoming Chinese Space Station Telescope(CSST)provides an opportunity to search for a large sample of ANSB candidates.Our goal is to check the completeness of the potential ANSB samples from CSST data.In this paper,we generate some ANSBs and normal binaries under the CSST photometric system by binary evolution and binary population synthesis method and use a machine learning method to train a classification model.Although the Precision(94.56%)of our machine learning model is as high as before study,the Recall is only about 63.29%.The Precision/Recall is mainly determined by the mass transfer rate between the NSs and their companions.In addition,we also find that the completeness of ANSB samples from CSST photometric data by the machine learning method also depends on the companion mass and the age of the system.ANSB candidates with a low initial mass companion star(0.1 M_(⊙)to 1 M_(⊙))have a relatively high Precision(94.94%)and high Recall(86.32%),whereas ANSB candidates with a higher initial mass companion star(1.1 M_(⊙)to 3 M_(⊙))have similar Precision(93.88%)and quite low Recall(42.67%).Our results indicate that although the machine learning method may obtain a relatively pure sample of ANSBs,a completeness correction is necessary for one to obtain a complete sample.
文摘Research by one of the authors suggested that the critical mass of constant-density neutron stars will be greater than eight solar masses when the majority of their neutrons group into bosons that form a Bose-Einstein condensate, provided the bosons interact with each other and have scattering lengths on the order of a picometer. That analysis was able to use Newtonian theory for the condensate with scattering lengths on this order, but general relativity provides a more fundamental analysis. In this paper, we determine the equilibrium states of a static, spherically-symmetric variable-density mixture of a degenerate gas of noninteracting neutrons and a Bose-Einstein condensate using general relativity. We use a Klein-Gordan Lagrangian density with a Gross-Pitaevskii term for the condensate and an effective field for the neutrons. We show that a new class of compact stars can exist with masses above the Oppenheimer-Volkoff limit, provided the scattering length of the bosons is large enough. These stars have no internal singularities, obey causality, and demonstrate a quantum mechanism consistent with general relativity that could prevent collapsed stars from becoming black holes.
文摘We report an indication (3.22 or) of ≈ 1860 Hz quasi-periodic oscillations from a neutron star low-mass X-ray binary 4U 1636-536. If confirmed, this will be by far the highest frequency feature observed from an accreting neutron star system, and hence could be very useful in understanding such systems. This plausible timing feature was observed simultaneously with lower (≈ 585 Hz) and upper (≈ 904 Hz) kilohertz quasi-periodic oscillations. The two kilohertz quasi-periodic oscillation frequencies had a ratio of ≈ 1.5, and the frequency of the alleged ≈ 1860 Hz feature was close to the triple and the double values of these frequencies. This can be useful for constraining the models of all the three features. In particular, the ≈ 1860Hz feature could be (1) from a new and heretofore unknown class of quasi-periodic oscillations, or (2) the first observed overtone of lower or upper kilohertz quasi-periodic oscillations. Finally, we note that, although the relatively low significance of the ≈ 1860 Hz feature argues for caution, even a 3.22 σ feature at such a uniquely high frequency should be interesting enough to spur a systematic search in the archival data, as well as to scientifically motivate sufficiently large timing instruments for the next generation X-ray missions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11988101,11773005,U2031203,U1631236,11703001,U1731238,U1938117,11725313,and 11721303)the International Partnership Program of Chinese Academy of Sciences(Grant No.114A11KYSB20160008)+1 种基金the National Key R&D Program of China(Grant No.2016YFA0400702)the Subsidy Project of the National Natural Science Foundation of China(Grant No.2021GZJ006)。
文摘LIGO-Virgo has observed the gravitational waves(GWs)from the coalescence of binary black hole(BBH)and binary neutron star(BNS)during O1 and O2,and the ones from NS-BH are expected to be hunted in the operating O3 run.The population properties and mass distribution of NS-BH mergers are poorly understood now,thus researchers simulated their chirp mass(M)distribution by a synthetic model,in which the BHs and NSs were inferred by LIGO-Virgo(O1/O2),and obtained the values in the range of 2.1 M_(⊙)<M<7.3 M_(⊙).In this paper,we further simulate the GW frequency(fGW)distribution of NS-BH mergers by the above-stated synthetic model,with a basic binary system model through the Monte Carlo method.Our results predict that the median with 90%credible intervals is 165+475-64 Hz in the case of Schwarzschild BH when the system just before merger,and this GW frequency is expected to increase several times in the merger stage,which is lying in the frequency band of LIGO-Virgo,i.e.,about 15 Hz to a few kHz.Our results provide an important reference for hunting the NS-BH mergers by the on-going O3 run of LIGO-Virgo.
基金supported by the National Key R&D Program of China with No.2021YFA1600403the National Natural Science Foundation of China under grant Nos.11973080 and 11733008+2 种基金the science research grants from the China Manned Space Project with No.CMS-CSST-2021B07the support by the Yunnan Ten Thousand Talents Plan—Young&Elite Talents ProjectCAS“Light of West China”Program。
文摘Accreting neutron star binary(ANSB)systems can provide some important information about neutron stars(NSs),especially on the structure and the equation of state of NSs.However,only a few ANSBs are known so far.The upcoming Chinese Space Station Telescope(CSST)provides an opportunity to search for a large number of ANSB candidates.We aim to investigate whether or not a machine learning method may efficiently search for ANSBs based on CSST photometric system.In this paper,we generate some ANSBs and normal binaries under CSST photometric system by binary evolution and binary population synthesis method and use a machine learning method to train a classification model.We consider the classical multi-color disk and the irradiated accretion disk,then compare their effects on the classification results.We find that no matter whether the X-ray reprocessing effect is included or not,the machine learning classification accuracy is always very high,i.e.,higher than 96%.If a significant magnitude difference exists between the accretion disk and the companion of an ANSB,machine learning may not distinguish it from some normal stars such as massive main sequence stars,white dwarf binaries,etc.False classifications of the ANSBs and the normal stars highly overlap in a color–color diagram.Our results indicate that machine learning would be a powerful way to search for potential ANSB candidates from the CSST survey.
文摘Our bimetric spacetime model of glitching pulsars is applied to the remnant of GW170817. Accordingly, pulsars are born with embryonic incompressible superconducting gluon-quark superfluid cores (SuSu-matter) that are embedded in Minkowski spacetime, whereas the ambient compressible and dissipative media (CDM) are imbedded in curved spacetime. As pulsars cool down, the equilibrium between both spacetime is altered, thereby triggering the well-observed glitch phenomena. Based thereon and assuming all neutron stars (<em>NSs</em>) to be born with the same initial mass of <img src="Edit_4d2d9e5f-812f-41d7-9422-5cfb3fc10997.bmp" alt="" />, we argue that the remnant of GW170817 should be a relatively faint <em>NS</em> with a massive central core made of SuSu-matter. The effective mass and radius of the remnant are predicted to be <img src="Edit_6702e3a8-abff-41f9-a45b-a2bc1e6c61b0.bmp" alt="" /> and <span style="white-space:nowrap;"><em>R</em><sub><em>rem</em></sub>=10.764 Km</span>, whereas the mass of the enclosed SuSu-core is <img src="Edit_6fe43fca-e33b-45a6-b846-bd7a09d4b8dd.bmp" alt="" />. Here, about 1/2<em>M</em><sub><em>core</em></sub> is an energy enhancement triggered by the phase transition of the gluon-quark-plasma from the microscopic into macroscopic scale. The current compactness of the remnant is <img src="Edit_38ced5f8-6f72-44d8-a3c9-89c2eaf73e0e.bmp" alt="" />, but predicted to increase as the CDM and cools down, rendering the remnant an invisible dark energy object, and therefore to an excellent black hole candidate.
基金Supported by the research grants from the China Manned Space Project with No. CMS-CSST-2021-A08。
文摘We study the origin of the UV-excess in star clusters by performing N-body simulations of six clusters with N = 10 k and N = 100 k(single stars & binary systems) and metallicities of Z = 0.01, 0.001 and 0.0001, using PETAR. All models initially have a 50% primordial binary fraction. Using Galev NB we convert the simulated data into synthetic spectra and photometry for the China Space Station Telescope(CSST) and Hubble Space Telescope(HST). From the spectral energy distributions we identify three stellar populations that contribute to the UVexcess:(1) second asymptotic giant branch stars, which contribute to the UV flux at early times;(2) naked helium stars and(3) white dwarfs, which are long-term contributors to the FUV spectra. Binary stars consisting of a white dwarf and a main sequence star are cataclysmic variable(CV) candidates. The magnitude distribution of CV candidates is bimodal up to 2 Gyr. The bright CV population is particularly bright in FUV-NUV. The FUV-NUV color of our model clusters is 1–2 mag redder than the UV-excess globular clusters in M87 and in the Milky Way. This discrepancy may be induced by helium enrichment in observed clusters. Our simulations are based on simple stellar evolution;we do not include the effects of variations in helium and light elements or multiple stellar populations. A positive radial color gradient is present in CSST NUV-y for main sequence stars in all models with a color difference of 0.2–0.5 mag, up to 4 half-mass radii. The CSST NUV-g color correlates strongly with HST FUV-NUV for NUV-g > 1 mag, with the linear relation FUV-NUV =(1.09 ± 0.12) ×(NUV-g) +(-1.01 ± 0.22). This allows for conversion of future CSST NUV-g colors into HST FUV-NUV colors, which are sensitive to UV-excess features. We find that CSST will be able to detect UVexcess in Galactic/extragalactic star clusters with ages >200 Myr.
基金supported by the National Natural Science Foundation of China(NSFC,grant No.U1838203)International Partnership Program of Chinese Academy of Sciences(grant No.113111KYSB20190020)。
文摘We analyzed the spectral properties and pulse profile of PSR J1811-1925,a pulsar located in the center of composite supernova remnant(SNR)G11.2-0.3,by using high timing resolution archival data from the Nuclear Spectroscopic Telescope Array Mission(NuSTAR).Analysis of archival Chandra data over different regions rules out the SNR shell as the site of the hard X-ray emission while spectral analysis indicates that the NuSTAR photons originate in the pulsar and its nebula.The pulse profile exhibits a broad single peak up to 35 keV.The jointed spectrum by combining NuSTAR and Chandra can be well fitted by a power-law model with a photon index ofΓ=1.58±0.04.The integrated flux of jointed spectrum over 1-10 keV is 3.36×10^(-12)erg cm^(-2)s^(-1).The spectrum of pulsar having photon indexΓ=1.33±0.06 and a 1-10 keV flux of 0.91×10^(-12)erg cm^(-2)s^(-1).We also performed the phase-resolved spectral analysis by splitting the whole pulse-on phase into five phase bins.The photon indices of the bins are all around 1.4,indicating that the photon index does not evolve with the phase.
基金supported by the National Key R&D Program of China (Nos. 2021YFA1600400, 2021YFA1600401)the National Natural Science Foundation of China (NSFC, Grant Nos. 11873016, 11973080, and 11733008)+2 种基金the Chinese Academy of Sciences, and Yunnan Province (Nos. 12090040, 12090043, 202001AW070007, 2019HA012, and 2017HC018)support from the Yunnan Ten Thousand Talents Plan–Young & Elite Talents Projectthe CAS “Light of West China” Program。
文摘Recent studies have suggested that type lax supernovae(SNe lax) are likely to result from a weak deflagration explosion of a Chandrasekhar-mass white dwarf in a binary system with a helium(He)-star companion.Assuming that most SNe Iax are produced from this scenario,in this work we extend our previous work on the threedimensional hydrodynamical simulation of ejecta-companion interaction by taking the orbital and spin velocities of the progenitor system into account.We then follow the post-impact evolution of a surviving He-star companion by using the one-dimensional stellar evolution code MESA.We aim to investigate the post-explosion rotation properties of a He-star companion in SNe Iax.We find that the He-star companion spins down after the impact due to the angular-momentum loss and expansion caused by the mass-stripping and shock heating during the interaction.This leads to the situation where the surface rotational speed of the surviving companion can drop to one-third of its pre-explosion value when it expands to a maximum radius a few years after the impact.Subsequently,the star shrinks and spins up again once the deposited energy is released.This spin-switching feature of the surviving He-star companions of SNe Iax may be useful for the identification of such objects in future observations.
文摘In this paper, we have investigated the structural properties of rotating neutron stars using the numerical RNS code and equations of state which have been calculated within the lowest order constrained variational(LOCV)approach. In order to calculate the equation of state of nuclear matter, we have used UV(14) +TNI and AV(18) potentials.We have computed the maximum mass of the neutron star and the corresponding equatorial radius at different angular velocities. We have also computed the structural properties of Keplerian rotating neutron stars for the maximum mass configuration, MK, RK, fK and jmax.