期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An encoding-based dual distance tree high-dimensional index
1
作者 ZHUANG Yi ZHUANG YueTing WU Fei 《Science in China(Series F)》 2008年第10期1401-1414,共14页
The paper proposes a novel symmetrical encoding-based index structure, which is called EDD-tree (for encoding-based dual distance tree), to support fast k-nearest neighbor (k-NN) search in high-dimensional spaces.... The paper proposes a novel symmetrical encoding-based index structure, which is called EDD-tree (for encoding-based dual distance tree), to support fast k-nearest neighbor (k-NN) search in high-dimensional spaces. In the EDD-tree, all data points are first grouped into clusters by a k-means clustering algorithm. Then the uniform ID number of each data point is obtained by a dual-distance-driven encoding scheme, in which each cluster sphere is partitioned twice according to the dual distances of start- and centroid-distance. Finally, the uniform ID number and the centroid-distance of each data point are combined to get a uniform index key, the latter is then indexed through a partition-based B^+-tree. Thus, given a query point, its k-NN search in high-dimensional spaces can be transformed into search in a single dimensional space with the aid of the EDD-tree index. Extensive performance studies are conducted to evaluate the effectiveness and efficiency of our proposed scheme, and the results demonstrate that this method outperforms the state-of-the-art high-dimensional search techniques such as the X-tree, VA-file, iDistance and NB-tree, especially when the query radius is not very large. 展开更多
关键词 high-dimensional indexing centroid-distance start-distance k-nearest neighbor search
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部