With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation sa...With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.展开更多
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan....A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.展开更多
已有的跨句多元关系抽取工作将输入文本表示为集成句内和句间依赖关系的复杂文档图,但图中包含的噪声信息会影响关系抽取的效果。针对这种情况,该文利用Graph state LSTM获得上下文信息,再分别利用词级注意力机制或位置感知的注意力机制...已有的跨句多元关系抽取工作将输入文本表示为集成句内和句间依赖关系的复杂文档图,但图中包含的噪声信息会影响关系抽取的效果。针对这种情况,该文利用Graph state LSTM获得上下文信息,再分别利用词级注意力机制或位置感知的注意力机制,自动聚焦在对关系抽取起到决定性作用的关键词上,降低噪声信息的影响。并且比较了两种注意力机制对使用Graph state LSTM进行关系抽取的影响。通过在一个重要的精确医学数据集上进行实验,验证了该文所提出模型的有效性。展开更多
We propose feasible experimental schemes for preparing all five-photon graph states. Our schemes require only linear optical elements, photon detectors and post-selection, which are available in current experiment so ...We propose feasible experimental schemes for preparing all five-photon graph states. Our schemes require only linear optical elements, photon detectors and post-selection, which are available in current experiment so that these schemes are within the reach of the current technology.展开更多
In this paper, a scheme for generating various multiatom entangled graph states via resonant interactions is proposed. We investigate the generation of various four-atom graph states first in the ideal case and then i...In this paper, a scheme for generating various multiatom entangled graph states via resonant interactions is proposed. We investigate the generation of various four-atom graph states first in the ideal case and then in the case in which the cavity decay and atomic spontaneous emission are taken into consideration in the process of interaction. More importantly, we improve the possible distortion of the graph states coming from cavity decay and atomic spontaneous emission by performing appropriate unitary transforms on atoms. The generation of multiatom entangled graph states is very important for constructing quantum one-way computer in a fault-tolerant manner. The resonant interaction time is very short, which is important in the sense of decoherence. Our scheme is easy and feasible within the reach of current experimental technology.展开更多
We propose feasible schemes for preparation of all five-atom graph states by cavity quantum electrodynamics (QED). Our schemes require only the atom-cavity interaction with a large detuning which is available in cur...We propose feasible schemes for preparation of all five-atom graph states by cavity quantum electrodynamics (QED). Our schemes require only the atom-cavity interaction with a large detuning which is available in current experiment so that these schemes are within the reach of the current technology.展开更多
Graph states are special multipartite entangled states that have been proven useful in a variety of quantum information tasks. We address the issue of characterizing and quantifying the genuine multipartite entangleme...Graph states are special multipartite entangled states that have been proven useful in a variety of quantum information tasks. We address the issue of characterizing and quantifying the genuine multipartite entanglement of graph states up to eight qubits. The entanglement measures used are the geometric measure, the relative entropy of entanglement, and the logarithmic robustness, have been proved to be equal for the genuine entanglement of a graph state. We provide upper and lower bounds as well as an iterative algorithm to determine the genuine multipartite entanglement.展开更多
We study the spin squeezing property of weighted graph states,which can be used to improve sensitivity in interferometry.We study the time evolution of spin squeezing under local decoherence acting independently on ea...We study the spin squeezing property of weighted graph states,which can be used to improve sensitivity in interferometry.We study the time evolution of spin squeezing under local decoherence acting independently on each qubit.Based on the analysis,the spin squeezing of the weighted graph states is somehow robust in the presence of decoherence and the decoherence limit in the improvement of the interferometric sensitivity is still achievable.Furthermore,one can obtain the optimal improvement of sensitivity by tuning the weighted of each edges of the weighted graph state.展开更多
The numbers of local complimentary inequivalent graph states for 9, 10 and 11 qubit systems are 440, 3132, 40457, respectively. We calculate the entanglement, the lower and upper bounds of the entanglement and obtain ...The numbers of local complimentary inequivalent graph states for 9, 10 and 11 qubit systems are 440, 3132, 40457, respectively. We calculate the entanglement, the lower and upper bounds of the entanglement and obtain the closest product states for all these graph states. New patterns of closest product states are analyzed.展开更多
We propose a scheme for generating multi-ion graph states using many trapped ions in thermal motion.Our generation scheme is insensitive to external state since the interaction between ions and laser fields does not i...We propose a scheme for generating multi-ion graph states using many trapped ions in thermal motion.Our generation scheme is insensitive to external state since the interaction between ions and laser fields does not involvethe external degree of freedom.The scheme can be well realized within the current experimental technique.展开更多
“双碳”背景下,异质能源的耦合加剧迫使综合能源系统(integrated energy system, IES)拓扑朝着更复杂、更灵活的方向不断演变。然而,现有优化调度方法对非欧网络拓扑知识及其异质潮流约束考虑不足。针对这一问题,提出一种基于图强化学...“双碳”背景下,异质能源的耦合加剧迫使综合能源系统(integrated energy system, IES)拓扑朝着更复杂、更灵活的方向不断演变。然而,现有优化调度方法对非欧网络拓扑知识及其异质潮流约束考虑不足。针对这一问题,提出一种基于图强化学习的综合能源系统优化调度方法。首先,基于图理论在保证节点多样状态的情况下,将异质能源网络拓扑转换为网络图模型。其次,通过建立基于真实图映射的状态-动作-奖励的框架,利用图强化学习的方法学习图模型的非欧拓扑信息,将异质潮流知识加入系统节点运行状态,从而实现IES的安全优化调度。最后,利用某工业园区的真实数据进行仿真验证,所提方法相对于传统方法有效缓解了节点电压越限的问题。结果表明,所提方法能够在考虑IES真实拓扑运行状态信息和异质潮流安全的情况下实现IES的优化调度。展开更多
癫痫是一种慢性神经系统疾病,其分类广泛、机制复杂,具有反复发作和不可预测的特点,对患者的生活造成了一定的影响。深度了解其病理生理机制对疾病的治疗和提高患者生活质量十分重要,静息态功能磁共振成像(resting-state functional mag...癫痫是一种慢性神经系统疾病,其分类广泛、机制复杂,具有反复发作和不可预测的特点,对患者的生活造成了一定的影响。深度了解其病理生理机制对疾病的治疗和提高患者生活质量十分重要,静息态功能磁共振成像(resting-state functional magnetic resonance imaging,rs-fMRI)现已成为探究癫痫脑功能改变的有效方法。目前基于rs-fMRI研究癫痫的数据分析方法主要有低频振幅(amplitude of low frequency fluctuation,ALFF)、局部一致性(regional homogeneity,ReHo)、功能连接(function connection,FC)和图论分析。本文将对rs-fMRI的各种分析方法在癫痫中的应用作一综述,为癫痫的病理生理机制及术前定位、治疗提供重要参考。展开更多
基金supported in part by the Guangxi Power Grid Company’s 2023 Science and Technol-ogy Innovation Project(No.GXKJXM20230169)。
文摘With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.
基金National Key Research and Development Program of China (Grant No. 2022YFE0102700)National Natural Science Foundation of China (Grant No. 52102420)+2 种基金research project “Safe Da Batt” (03EMF0409A) funded by the German Federal Ministry of Digital and Transport (BMDV)China Postdoctoral Science Foundation (Grant No. 2023T160085)Sichuan Science and Technology Program (Grant No. 2024NSFSC0938)。
文摘A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively.
文摘已有的跨句多元关系抽取工作将输入文本表示为集成句内和句间依赖关系的复杂文档图,但图中包含的噪声信息会影响关系抽取的效果。针对这种情况,该文利用Graph state LSTM获得上下文信息,再分别利用词级注意力机制或位置感知的注意力机制,自动聚焦在对关系抽取起到决定性作用的关键词上,降低噪声信息的影响。并且比较了两种注意力机制对使用Graph state LSTM进行关系抽取的影响。通过在一个重要的精确医学数据集上进行实验,验证了该文所提出模型的有效性。
文摘We propose feasible experimental schemes for preparing all five-photon graph states. Our schemes require only linear optical elements, photon detectors and post-selection, which are available in current experiment so that these schemes are within the reach of the current technology.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60678022 and 10704001)the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No 20060357008)+2 种基金Anhui Provincial Natural Science Foundation, China (Grant No 070412060)the Key Program of the Education Department of Anhui Province, China (Grant Nos KJ2008A28ZC, KJ2008B83ZC, KJ2008B265 and KJ2007B082)the Talent Foundation of Anhui University, China,and the Anhui Key Laboratory of Information Materials and Devices (Anhui University), China
文摘In this paper, a scheme for generating various multiatom entangled graph states via resonant interactions is proposed. We investigate the generation of various four-atom graph states first in the ideal case and then in the case in which the cavity decay and atomic spontaneous emission are taken into consideration in the process of interaction. More importantly, we improve the possible distortion of the graph states coming from cavity decay and atomic spontaneous emission by performing appropriate unitary transforms on atoms. The generation of multiatom entangled graph states is very important for constructing quantum one-way computer in a fault-tolerant manner. The resonant interaction time is very short, which is important in the sense of decoherence. Our scheme is easy and feasible within the reach of current experimental technology.
文摘We propose feasible schemes for preparation of all five-atom graph states by cavity quantum electrodynamics (QED). Our schemes require only the atom-cavity interaction with a large detuning which is available in current experiment so that these schemes are within the reach of the current technology.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60972071 and 11375152)
文摘Graph states are special multipartite entangled states that have been proven useful in a variety of quantum information tasks. We address the issue of characterizing and quantifying the genuine multipartite entanglement of graph states up to eight qubits. The entanglement measures used are the geometric measure, the relative entropy of entanglement, and the logarithmic robustness, have been proved to be equal for the genuine entanglement of a graph state. We provide upper and lower bounds as well as an iterative algorithm to determine the genuine multipartite entanglement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11004029 and 11174052)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2010422)+2 种基金the Ph. D. Program of the Ministry of Education of Chinathe Excellent Young Teachers Program of Southeast Universitythe National Basic Research Development Program of China(Grant No. 2011CB921203)
文摘We study the spin squeezing property of weighted graph states,which can be used to improve sensitivity in interferometry.We study the time evolution of spin squeezing under local decoherence acting independently on each qubit.Based on the analysis,the spin squeezing of the weighted graph states is somehow robust in the presence of decoherence and the decoherence limit in the improvement of the interferometric sensitivity is still achievable.Furthermore,one can obtain the optimal improvement of sensitivity by tuning the weighted of each edges of the weighted graph state.
文摘The numbers of local complimentary inequivalent graph states for 9, 10 and 11 qubit systems are 440, 3132, 40457, respectively. We calculate the entanglement, the lower and upper bounds of the entanglement and obtain the closest product states for all these graph states. New patterns of closest product states are analyzed.
基金National Natural Science Foundation of China under Grant Nos.60678022 and 10704001the Specialized Research Fund for the Doctoral Program of Higher Education of Anhui Province under Grant No.20060357008+2 种基金Natural Science Foundation of Anhui Province under Grant No.070412060the Talent Foundation of Anhui UniversityAnhui Key Laboratory of Information Materials and Devices (Anhui University)
文摘We propose a scheme for generating multi-ion graph states using many trapped ions in thermal motion.Our generation scheme is insensitive to external state since the interaction between ions and laser fields does not involvethe external degree of freedom.The scheme can be well realized within the current experimental technique.
文摘“双碳”背景下,异质能源的耦合加剧迫使综合能源系统(integrated energy system, IES)拓扑朝着更复杂、更灵活的方向不断演变。然而,现有优化调度方法对非欧网络拓扑知识及其异质潮流约束考虑不足。针对这一问题,提出一种基于图强化学习的综合能源系统优化调度方法。首先,基于图理论在保证节点多样状态的情况下,将异质能源网络拓扑转换为网络图模型。其次,通过建立基于真实图映射的状态-动作-奖励的框架,利用图强化学习的方法学习图模型的非欧拓扑信息,将异质潮流知识加入系统节点运行状态,从而实现IES的安全优化调度。最后,利用某工业园区的真实数据进行仿真验证,所提方法相对于传统方法有效缓解了节点电压越限的问题。结果表明,所提方法能够在考虑IES真实拓扑运行状态信息和异质潮流安全的情况下实现IES的优化调度。
文摘癫痫是一种慢性神经系统疾病,其分类广泛、机制复杂,具有反复发作和不可预测的特点,对患者的生活造成了一定的影响。深度了解其病理生理机制对疾病的治疗和提高患者生活质量十分重要,静息态功能磁共振成像(resting-state functional magnetic resonance imaging,rs-fMRI)现已成为探究癫痫脑功能改变的有效方法。目前基于rs-fMRI研究癫痫的数据分析方法主要有低频振幅(amplitude of low frequency fluctuation,ALFF)、局部一致性(regional homogeneity,ReHo)、功能连接(function connection,FC)和图论分析。本文将对rs-fMRI的各种分析方法在癫痫中的应用作一综述,为癫痫的病理生理机制及术前定位、治疗提供重要参考。