Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the s...Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the synthesis process. After successive heat treatments at 650 and 950 ℃, the prepared powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy. The powders prepared by adding salt (NaCl) as grinding aid exhibit a clear R3m layer structure. The powders by other grinding aids like heptane show some impurity peaks in the XRD pattern. The former powders show a uniform particle size distribution of less than 1 μm average size while the latter shows a wide distribution ranging from 1 to 10 μm. Energy dispersive X-ray (EDX) analysiss show that the ratio of Ni, Co, and Mn content in the powder is approximately 1/3, 1/3, and 1/3, respecively. The EDX data indicate no incorporation of sodium or chlorine into the powders. Charge-discharge tests gave an initial discharge capacity of 160 mAh·g-1 for the powders with NaCl addition while 70 mAh·g-1 for the powders with heptane.展开更多
Sm0.2Ce0.8O1.9 (SDC) electrolyte was prepared by a modified solid state method at relatively low sintering temperatures without any sintering promoters. The phase composition and microstructure of the electrolytes w...Sm0.2Ce0.8O1.9 (SDC) electrolyte was prepared by a modified solid state method at relatively low sintering temperatures without any sintering promoters. The phase composition and microstructure of the electrolytes were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) technologies. A relative density of SDC electrolyte sintered at 1300 ℃ reached 97.3%and the mean SDC grain size was about 770 nm. Their ionic conductivity and thermal expansion coefficient were also measured by electrochemical workstation and dilatometer. The electrolyte attained a high conductivity of 5×10^-2 S/cm at 800 ℃ with an activation energy of 1.03 eV and a proper thermal expansion coefficient of 12.6×10^-6 K^-1.展开更多
Large scale NiFe2O4 nanowires were synthesized with NiO nanosheets as precursor by means of the topochemical solid state method. The morphologies and magnetic properties of NiFe2O4 annealed at different temperatures w...Large scale NiFe2O4 nanowires were synthesized with NiO nanosheets as precursor by means of the topochemical solid state method. The morphologies and magnetic properties of NiFe2O4 annealed at different temperatures were studied. An appropriate annealing temperature was requested to transfer NiO nanosheets and Feions into NiFe2O4 nanowires. In the beginning stage of synthesizing process, the shape ofNiO nanosheets remained unchanged at low temperatures. And then, NiO nanosheets split into nanowires from 400 ℃ to 600 ℃. At last they transformed into nanoparticles from 700 ℃ to 1000 ℃. Thus, the optimized annealing temperature was selected as 600 ℃ because the NiFe2O4 obtained at 600 ℃(N600) exhibited a maximum aspect ratio of 50 with a diameter of 20 nm and a length of 1 μm. Furthermore, N600 also displayed the largest magnetization value of 26.86 A·m^2/kg and the lowest coercivity(Hc) of 8914 A/m.展开更多
The reliability of post grouting pile axial resistance was studied by proposing a design method for its probabilistic limit state,which is represented by the partial coefficients of load,end,and side resistance.The hy...The reliability of post grouting pile axial resistance was studied by proposing a design method for its probabilistic limit state,which is represented by the partial coefficients of load,end,and side resistance.The hyperbolic,modified hyperbolic,and polynomial models were employed to predict the ultimate bearing capacity of test piles that were not loaded to damage in field tests.The results were used for the calculation and calibration of the reliability index.The reliability of the probabilistic limit state design method was verified by an engineering case.The results show that the prediction results obtained from the modified hyperbolic model are closest to those obtained through the static load test.The proposed corresponding values of total,side,and end resistance partial coefficients are 1.84,1.66,and 2.73 when the dead and live load partial coefficients are taken as 1.1 and 1.4,respectively.Meanwhile,the corresponding partial coefficients of total,side,and end resistance are 1.70,1.56,and 2.34 when the dead and live load partial coefficients are taken as 1.2 and 1.4,respectively.展开更多
Oily cold rolling mill (CRM) sludge is one of the pollutants emitted by iron and steel plants. Recycling oily CRM sludge can not only reduce pollution but also bring social and environmental benefits. In this study,...Oily cold rolling mill (CRM) sludge is one of the pollutants emitted by iron and steel plants. Recycling oily CRM sludge can not only reduce pollution but also bring social and environmental benefits. In this study, using oily CRM sludge as sources of iron oxide, the strontium ferrite powders were synthesized in multiple steps including vacuum distillation, magnetic separation, oxidizing roasting, and solidstate reaction. The optimal technological conditions of vacuum distillation and oxidizing roasting were studied carefully. To consider the effects of Fe203/ SrCO3 tool ratio, calcination temperature, milling time and calcination time on magnetic properties of prepared strontium ferrite powders, the orthogonal experimental method was adopted. The maximum saturation magneti- zation (62.6 mA-m2.g-1) of the synthesized strontium ferrite powders was achieved at the Fe203/SrCO3 mol ratio of 6, 5 h milling time, 1250 ~C calcination temperature, and 1 h calcination time. Strontium ferrite powders syn- thesis method not only provides a cheap, high quality raw material for the production of strontium ferrite powders, but also effectively prevents the environmental pollution.展开更多
Application of spline element and state space method for analysis of dynamic response of elastic rectangular plates is presented. The spline element method is used for space domain and the state space method in contro...Application of spline element and state space method for analysis of dynamic response of elastic rectangular plates is presented. The spline element method is used for space domain and the state space method in control theory of system is used for time domain. A state variable recursive scheme is developed, then the dynamic response of structure can he calculated directly. Several numerical examples are given. The results which are presented to demonstrate the accuracy and efficiency of the present method are quite satisfactory.展开更多
This paper presents state space methods for decentralized Hoe control, which contain two respects: a parametrization approach and an iterative algorithm. For large scale systems with N subsystems, decentralized Hoe c...This paper presents state space methods for decentralized Hoe control, which contain two respects: a parametrization approach and an iterative algorithm. For large scale systems with N subsystems, decentralized Hoe con trollers can be derived by a parametrization result for centralized Her: controllers and designed by an iterative algorithm with structured constraint to the controllers.展开更多
We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we ...We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we have to calculate matrix elements that are the values of an operator between two Lanczos states. In the calculations of the matrix elements we have to keep the set of Lanczos states on the computer memory. Therefore the memory limits the system size in the calculations. Here we propose an application of the stochastic state selection method in order to weaken this limitation. This method is to select some parts of basis states stochastically and to abandon other basis state. Only by the selected basis states we calculate the inner product. After making the statistical average, we can obtain the correct value of the inner product. By the stochastic state selection method we can reduce the number of the basis states for calculations. As a result we can relax the limitation on the computer memory. In order to study the Higgs mode at finite temperature, we calculate the dynamical correlations of the two spin operators in the spin-1/2 Heisenberg antiferromagnet on the square lattice using the improved finite temperature Lanczos method. Our results on the lattices of up to 32 sites show that the Higgs mode exists at low temperature and it disappears gradually when the temperature becomes large. At high temperature we do not find this mode in the dynamical correlations.展开更多
We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods includi...We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCIq-Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF2 related icMRCI+Q/aug-cc-pVTZ level. The ab initio results will and dynamics of electronic states of CF2 radical. to the lowest dissociation limit are calculated at the further increase our understanding of the structures展开更多
We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition com...We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.展开更多
Several efficient analytical methods have been developed to solve the solid-state diffusion problem, for constant diffusion coefficient problems. However, these methods cannot be applied for concentration-dependent di...Several efficient analytical methods have been developed to solve the solid-state diffusion problem, for constant diffusion coefficient problems. However, these methods cannot be applied for concentration-dependent diffusion coefficient problems and numerical methods are used instead. Herein, grid-based numerical methods derived from the control volume discretization are presented to resolve the characteristic nonlinear system of partial differential equations. A novel hybrid backward Euler control volume (HBECV) method is presented which requires only one iteration to reach an implicit solution. The HBECV results are shown to be stable and accurate for a moderate number of grid points. The computational speed and accuracy of the HBECV, justify its use in battery simulations, in which the solid-state diffusion coefficient is a strong function of the concentration.展开更多
The time-dependent Jones Wilkins-Lee equation products for aluminized explosives. To obtain the of state (JWL-EOS) is applied to describe detonation state time-dependent JWL-EOS parameters, cylinder tests and underw...The time-dependent Jones Wilkins-Lee equation products for aluminized explosives. To obtain the of state (JWL-EOS) is applied to describe detonation state time-dependent JWL-EOS parameters, cylinder tests and underwater explosion experiments are performed. According to the result of the wall radial velocity in cylinder tests and the shock wave pressures in underwater explosion experiments, the time-dependent JWL-EOS parameters are determined by iterating these variables in AUTODYN hydroeode simulations until the experimental values are reproduced. In addition, to verify the reliability of the derived JWL-EOS parameters, the aluminized explosive experiment is conducted in concrete. The shock wave pressures in the affected concrete bodies are measured by using manganin pressure sensors, and the rod velocity is obtained by using a high-speed camera. Simultaneously, the shock wave pressure and the rod velocity are calculated by using the derived time-dependent JWL equation of state. The calculated results are in good agreement with the experimental data.展开更多
For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliab...The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliability. Based on the analysis of the characteristics of real-time embedded software, the formal method is introduced into the real-time embedded software testing field and the real-time extended finite state machine (RT-EFSM) model is studied firstly. Then, the time zone division method of real-time embedded system is presented and the definition and description methods of time-constrained transition equivalence class (timeCTEC) are presented. Furthermore, the approaches of the testing sequence and test case generation are put forward. Finally, the proposed method is applied to a typical avionics real- time embedded software testing practice and the examples of the timeCTEC, testing sequences and test cases are given. With the analysis of the testing result, the application verification shows that the proposed method can effectively describe the real-time embedded software state transition characteristics and real-time requirements and play the advantages of the formal methods in accuracy, effectiveness and the automation supporting. Combined with the testing platform, the real-time, closed loop and automated simulation testing for real-time embedded software can be realized effectively.展开更多
The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 an...The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600°C.The values of the cross point between the curves of the real and imaginary parts of the optical conductivity ɑ_1 and ɑ_1 with energy axis of films exhibit values that correspond to optical gaps and are about 3.25-3.3 eV. The maxima of peaks in plots dR/dλ and dT/dλ versus wavelength of films exhibit optical gaps at about 3.12-3.25 eV.The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14-3.2 eV. It can be seen that films annealed at 600°C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600°C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy d of films annealed at 500°C has the minimum value of 43 eV.展开更多
We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold pertu...We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.展开更多
This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical m...This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.展开更多
Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective H...Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective Hamiltonian using various methods has gained great interest. We consider a vector differential equation of motion to derive the effective Hamiltonian for any periodically driven two-level system, and the dynamics of the spin vector are an evolution under the Bloch sphere. Here, we investigate the properties of this equation and show that a sudden change of the effective Hamiltonian is expected. Furthermore, we present several exact relations, whose expressions are independent of the different starting points. Moreover, we deduce the effective Hamiltonian from the high-frequency limit, which approximately equals the results in previous studies. Our results show that the vector differential equation of motion is not affected by a convergence problem, and thus, can be used to numerically investigate the effective models in any periodic modulating system. Finally, we anticipate that the proposed method can be applied to experimental platforms that require time-periodic modulation, such as ultracold atoms and optical lattices.展开更多
基金This research was supportedby a grant under‘Development of Key Materials and Fundamental Tech-nology for Secondary Battery’Program of the Ministry of Commerce,Industry and Energy,Korea.
文摘Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the synthesis process. After successive heat treatments at 650 and 950 ℃, the prepared powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy. The powders prepared by adding salt (NaCl) as grinding aid exhibit a clear R3m layer structure. The powders by other grinding aids like heptane show some impurity peaks in the XRD pattern. The former powders show a uniform particle size distribution of less than 1 μm average size while the latter shows a wide distribution ranging from 1 to 10 μm. Energy dispersive X-ray (EDX) analysiss show that the ratio of Ni, Co, and Mn content in the powder is approximately 1/3, 1/3, and 1/3, respecively. The EDX data indicate no incorporation of sodium or chlorine into the powders. Charge-discharge tests gave an initial discharge capacity of 160 mAh·g-1 for the powders with NaCl addition while 70 mAh·g-1 for the powders with heptane.
基金supported by Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(IRT1146)the Program of Research Innovation for University Graduate Students of Jiangsu Province(CXLX13_408)the Priority Academic Development Program of Jiangsu Higher Education Institutions,P.R.China
文摘Sm0.2Ce0.8O1.9 (SDC) electrolyte was prepared by a modified solid state method at relatively low sintering temperatures without any sintering promoters. The phase composition and microstructure of the electrolytes were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) technologies. A relative density of SDC electrolyte sintered at 1300 ℃ reached 97.3%and the mean SDC grain size was about 770 nm. Their ionic conductivity and thermal expansion coefficient were also measured by electrochemical workstation and dilatometer. The electrolyte attained a high conductivity of 5×10^-2 S/cm at 800 ℃ with an activation energy of 1.03 eV and a proper thermal expansion coefficient of 12.6×10^-6 K^-1.
基金Supported by the National Natural Science Foundation of China(Nos.21301038, 51108111, 21203040), the Fundamental Research Funds for the Central Universities of China(No.HEUCF2015003) and the Natural Science Foundation of Heilongjiang Province of China(No.B201201).
文摘Large scale NiFe2O4 nanowires were synthesized with NiO nanosheets as precursor by means of the topochemical solid state method. The morphologies and magnetic properties of NiFe2O4 annealed at different temperatures were studied. An appropriate annealing temperature was requested to transfer NiO nanosheets and Feions into NiFe2O4 nanowires. In the beginning stage of synthesizing process, the shape ofNiO nanosheets remained unchanged at low temperatures. And then, NiO nanosheets split into nanowires from 400 ℃ to 600 ℃. At last they transformed into nanoparticles from 700 ℃ to 1000 ℃. Thus, the optimized annealing temperature was selected as 600 ℃ because the NiFe2O4 obtained at 600 ℃(N600) exhibited a maximum aspect ratio of 50 with a diameter of 20 nm and a length of 1 μm. Furthermore, N600 also displayed the largest magnetization value of 26.86 A·m^2/kg and the lowest coercivity(Hc) of 8914 A/m.
基金The National Natural Science Foundation of China(No.51878160,52008100,52078128).
文摘The reliability of post grouting pile axial resistance was studied by proposing a design method for its probabilistic limit state,which is represented by the partial coefficients of load,end,and side resistance.The hyperbolic,modified hyperbolic,and polynomial models were employed to predict the ultimate bearing capacity of test piles that were not loaded to damage in field tests.The results were used for the calculation and calibration of the reliability index.The reliability of the probabilistic limit state design method was verified by an engineering case.The results show that the prediction results obtained from the modified hyperbolic model are closest to those obtained through the static load test.The proposed corresponding values of total,side,and end resistance partial coefficients are 1.84,1.66,and 2.73 when the dead and live load partial coefficients are taken as 1.1 and 1.4,respectively.Meanwhile,the corresponding partial coefficients of total,side,and end resistance are 1.70,1.56,and 2.34 when the dead and live load partial coefficients are taken as 1.2 and 1.4,respectively.
基金supported by the National Key Technology R&D Program (Nos. 2012BAC02B01, 2012BAC12B05, 2011BAE13B07, and 2011BAC10B02)the National High Technology Research and Development Program of China (No. 2012AA063202)+2 种基金the National Natural Science Foundation of China (Nos. 51174247 and 51004011)the Science and Technology Program of Guangdong Province, China (No. 2010A030200003)the Ph.D. Programs Foundation of the Ministry of Education of China (No. 2010000612003)
文摘Oily cold rolling mill (CRM) sludge is one of the pollutants emitted by iron and steel plants. Recycling oily CRM sludge can not only reduce pollution but also bring social and environmental benefits. In this study, using oily CRM sludge as sources of iron oxide, the strontium ferrite powders were synthesized in multiple steps including vacuum distillation, magnetic separation, oxidizing roasting, and solidstate reaction. The optimal technological conditions of vacuum distillation and oxidizing roasting were studied carefully. To consider the effects of Fe203/ SrCO3 tool ratio, calcination temperature, milling time and calcination time on magnetic properties of prepared strontium ferrite powders, the orthogonal experimental method was adopted. The maximum saturation magneti- zation (62.6 mA-m2.g-1) of the synthesized strontium ferrite powders was achieved at the Fe203/SrCO3 mol ratio of 6, 5 h milling time, 1250 ~C calcination temperature, and 1 h calcination time. Strontium ferrite powders syn- thesis method not only provides a cheap, high quality raw material for the production of strontium ferrite powders, but also effectively prevents the environmental pollution.
文摘Application of spline element and state space method for analysis of dynamic response of elastic rectangular plates is presented. The spline element method is used for space domain and the state space method in control theory of system is used for time domain. A state variable recursive scheme is developed, then the dynamic response of structure can he calculated directly. Several numerical examples are given. The results which are presented to demonstrate the accuracy and efficiency of the present method are quite satisfactory.
文摘This paper presents state space methods for decentralized Hoe control, which contain two respects: a parametrization approach and an iterative algorithm. For large scale systems with N subsystems, decentralized Hoe con trollers can be derived by a parametrization result for centralized Her: controllers and designed by an iterative algorithm with structured constraint to the controllers.
文摘We propose an improved finite temperature Lanczos method using the stochastic state selection method. In the finite temperature Lanczos method, we generate Lanczos states and calculate the eigenvalues. In addition we have to calculate matrix elements that are the values of an operator between two Lanczos states. In the calculations of the matrix elements we have to keep the set of Lanczos states on the computer memory. Therefore the memory limits the system size in the calculations. Here we propose an application of the stochastic state selection method in order to weaken this limitation. This method is to select some parts of basis states stochastically and to abandon other basis state. Only by the selected basis states we calculate the inner product. After making the statistical average, we can obtain the correct value of the inner product. By the stochastic state selection method we can reduce the number of the basis states for calculations. As a result we can relax the limitation on the computer memory. In order to study the Higgs mode at finite temperature, we calculate the dynamical correlations of the two spin operators in the spin-1/2 Heisenberg antiferromagnet on the square lattice using the improved finite temperature Lanczos method. Our results on the lattices of up to 32 sites show that the Higgs mode exists at low temperature and it disappears gradually when the temperature becomes large. At high temperature we do not find this mode in the dynamical correlations.
基金Supported by the 2014 Postdoctoral Sustentation Fund of Qingdao under Grant No 01020120517the Natural Science Foundation of Shandong Province under Grant No ZR2014AP001+1 种基金the National Natural Science Foundation of China under Grant No11447226the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents under Grant No 2015RCJJ015
文摘We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCIq-Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF2 related icMRCI+Q/aug-cc-pVTZ level. The ab initio results will and dynamics of electronic states of CF2 radical. to the lowest dissociation limit are calculated at the further increase our understanding of the structures
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11190024 and 11474331)
文摘We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.
文摘Several efficient analytical methods have been developed to solve the solid-state diffusion problem, for constant diffusion coefficient problems. However, these methods cannot be applied for concentration-dependent diffusion coefficient problems and numerical methods are used instead. Herein, grid-based numerical methods derived from the control volume discretization are presented to resolve the characteristic nonlinear system of partial differential equations. A novel hybrid backward Euler control volume (HBECV) method is presented which requires only one iteration to reach an implicit solution. The HBECV results are shown to be stable and accurate for a moderate number of grid points. The computational speed and accuracy of the HBECV, justify its use in battery simulations, in which the solid-state diffusion coefficient is a strong function of the concentration.
基金Supported by the National Natural Science Foundation of China under Grant No 11172042
文摘The time-dependent Jones Wilkins-Lee equation products for aluminized explosives. To obtain the of state (JWL-EOS) is applied to describe detonation state time-dependent JWL-EOS parameters, cylinder tests and underwater explosion experiments are performed. According to the result of the wall radial velocity in cylinder tests and the shock wave pressures in underwater explosion experiments, the time-dependent JWL-EOS parameters are determined by iterating these variables in AUTODYN hydroeode simulations until the experimental values are reproduced. In addition, to verify the reliability of the derived JWL-EOS parameters, the aluminized explosive experiment is conducted in concrete. The shock wave pressures in the affected concrete bodies are measured by using manganin pressure sensors, and the rod velocity is obtained by using a high-speed camera. Simultaneously, the shock wave pressure and the rod velocity are calculated by using the derived time-dependent JWL equation of state. The calculated results are in good agreement with the experimental data.
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
基金supported by the Aviation Science Foundation of China
文摘The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliability. Based on the analysis of the characteristics of real-time embedded software, the formal method is introduced into the real-time embedded software testing field and the real-time extended finite state machine (RT-EFSM) model is studied firstly. Then, the time zone division method of real-time embedded system is presented and the definition and description methods of time-constrained transition equivalence class (timeCTEC) are presented. Furthermore, the approaches of the testing sequence and test case generation are put forward. Finally, the proposed method is applied to a typical avionics real- time embedded software testing practice and the examples of the timeCTEC, testing sequences and test cases are given. With the analysis of the testing result, the application verification shows that the proposed method can effectively describe the real-time embedded software state transition characteristics and real-time requirements and play the advantages of the formal methods in accuracy, effectiveness and the automation supporting. Combined with the testing platform, the real-time, closed loop and automated simulation testing for real-time embedded software can be realized effectively.
文摘The optical reflectance and transmittance spectra in the wavelength range of 300-2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600°C.The values of the cross point between the curves of the real and imaginary parts of the optical conductivity ɑ_1 and ɑ_1 with energy axis of films exhibit values that correspond to optical gaps and are about 3.25-3.3 eV. The maxima of peaks in plots dR/dλ and dT/dλ versus wavelength of films exhibit optical gaps at about 3.12-3.25 eV.The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14-3.2 eV. It can be seen that films annealed at 600°C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600°C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy d of films annealed at 500°C has the minimum value of 43 eV.
基金Project supported by the National Natural Science Foundation of China(Grant No.11647071)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160435)
文摘We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.
基金supported by the National Natural Science Foundation of China(6127312660904032)the Natural Science Foundation of Guangdong Province(10251064101000008)
文摘This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.
基金supported by the National Natural Science Foundation of China (Grant No. 11774328)。
文摘Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective Hamiltonian using various methods has gained great interest. We consider a vector differential equation of motion to derive the effective Hamiltonian for any periodically driven two-level system, and the dynamics of the spin vector are an evolution under the Bloch sphere. Here, we investigate the properties of this equation and show that a sudden change of the effective Hamiltonian is expected. Furthermore, we present several exact relations, whose expressions are independent of the different starting points. Moreover, we deduce the effective Hamiltonian from the high-frequency limit, which approximately equals the results in previous studies. Our results show that the vector differential equation of motion is not affected by a convergence problem, and thus, can be used to numerically investigate the effective models in any periodic modulating system. Finally, we anticipate that the proposed method can be applied to experimental platforms that require time-periodic modulation, such as ultracold atoms and optical lattices.