Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a cry...Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.展开更多
In a power system, power generation and load have frequency response characteristics, which randomly fluctuate with changes in operating status. This study investigates a probabilistic power flow method that considers...In a power system, power generation and load have frequency response characteristics, which randomly fluctuate with changes in operating status. This study investigates a probabilistic power flow method that considers the unit and load uncertainty of the static frequency characteristic. Firstly, a calculation model is established on the basis of the characteristics of the frequency modulation performance of the unit and load. Then a calculation method is developed using the concept of dynamic power flow in order to determine the probability distribution of the active power flow of each line under the occurrence of a fault in the system. In the method, Monte Carlo sampling with the semi-invariant method is applied for analysis and calculation. The IEEE-30-buses system is taken as an example to analyze the impact of different responses of units on the power flow distribution of various branches. The method discussed herein is compared with the Monte Carlo simulation method to verify its effectiveness.展开更多
基金Project(11102164)supported by the National Natural Science Foundation of ChinaProject(G9KY101502)supported by NPU Foundation for Fundamental Research,China
文摘Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.
基金Supported by the State Grid Scientific and Technological Project (Title: Research on Control Strategy with Fast Demand Response to Severe Power Shortage, SGJS0000DKJS1700263)
文摘In a power system, power generation and load have frequency response characteristics, which randomly fluctuate with changes in operating status. This study investigates a probabilistic power flow method that considers the unit and load uncertainty of the static frequency characteristic. Firstly, a calculation model is established on the basis of the characteristics of the frequency modulation performance of the unit and load. Then a calculation method is developed using the concept of dynamic power flow in order to determine the probability distribution of the active power flow of each line under the occurrence of a fault in the system. In the method, Monte Carlo sampling with the semi-invariant method is applied for analysis and calculation. The IEEE-30-buses system is taken as an example to analyze the impact of different responses of units on the power flow distribution of various branches. The method discussed herein is compared with the Monte Carlo simulation method to verify its effectiveness.