A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstabl...A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.展开更多
An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means...An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means of the fact that in steady state, the two boundary values are equal in one switching period. The exponential matrix is evaluated by precise time-domain-integration method, and then the related curve between feedback duty cycle and the input one is obtained. Not only can the steady-state duty cycle be found from the curve, but also the stability and stable domain of the system. Compared with other methods, it features with simplicity and less calculation, and fit for numerical simulation and analysis for closed-loop switching converters. The simulation results of examples indicate the correctness of the presented method.展开更多
This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dep...This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dependent switching strategy, in which the switching instants must be given in advance, the state-dependent switching strategy is used to design switching signals. Based on multiple Lyapunov-like functions method, several criteria for switched nonlinear systems to be finite-time H<sub>∞</sub> control are derived. Finally, a numerical example with simulation results is provided to show the validity of the conclusions.展开更多
This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller u...This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller under arbitrary switching signals,in which an H∞ performance is required. The condition is shown in the form of linear matrix inequalities (LMI). Finally,a numerical example shows the feasibility of the designed controller and illustrates that the new sufficient condition has lower conservation and more optimized H∞ tfperformance.展开更多
We have made a gain-switched all-solid-state quasi-continuous-wave (QCW) tunable Ti:sapphire laser system, which is pumped by a 532 nm intracavity frequency-doubled Nd:YAG laser. Based on the theory of gain-switch...We have made a gain-switched all-solid-state quasi-continuous-wave (QCW) tunable Ti:sapphire laser system, which is pumped by a 532 nm intracavity frequency-doubled Nd:YAG laser. Based on the theory of gain-switching and the study on the influencing factors of the output pulse width, an effective method for obtaining high power and narrow pulse width output is proposed. Through deliberately designing the pump source and the resonator of the Ti:sapphire laser, when the repetition rate is 6 kHz and the length of the cavity is 220 mm, at an incident pump power of 22 W, the tunable Ti:sapphire laser from 700 to 950nm can be achieved. It has a maximum average output power of 5.6W at 800nm and the pulse width of 13.2 ns, giving an optical conversion efficiency of 25.5% from the 532 mn pump laser to the Ti:sapphire laser.展开更多
The problem of admissibility analysis and control synthesis of discrete-time switched linear singular (SLS) systems for arbitrary switching laws is solved. By using the switched Lyapunov function approach, some new ...The problem of admissibility analysis and control synthesis of discrete-time switched linear singular (SLS) systems for arbitrary switching laws is solved. By using the switched Lyapunov function approach, some new sufficient conditions under which the SLS system is admissible for arbitrary switching laws are derived in terms of linear matrix inequalities (LMIs). Based on the admissibility results, control synthesis is then to design switched state feedback and static output feedback controllers, guaranteeing that the resulting closed-loop system is admissible. The presented results can be viewed as the extensions of previous works on switched Lyapunov function approach from the regular switched systems to singular switched cases. Examples are provided to demonstrate the reduced conservatism and effectiveness of the proposed conditions.展开更多
We consider quadratic stabilization for a class of switched systems which are composed of a finite set of continuoustime linear subsystems with norm bounded uncertainties. Under the assumption that there is no single ...We consider quadratic stabilization for a class of switched systems which are composed of a finite set of continuoustime linear subsystems with norm bounded uncertainties. Under the assumption that there is no single quadratically stable subsystem, if a convex combination of subsystems is quadratically stable, then we propose a state-dependent switching law, based on the convex combination of subsystems, such that the entire switched linear system is quadratically stable. When the state information is not available, we extend the discussion to designing an outputdependent switching law by constructing a robust Luenberger observer for each subsystem.展开更多
A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical e...A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical evaporation method.By inserting the WS2 SA into the plano-concave laser cavity,we achieve 153-ns pulses with an average output power of1.19 W at 1064 nm.To the best of our knowledge,both of them are the best results among those obtained by the Q-switched solid-state lasers with WS_2-based absorbers.The repetition rate ranges from 1.176 MHz to 1.578 MHz.As far as we know,it is the first time that MHz level Q-switched pulses have been generated in all solid state lasers based on low-dimensional materials so far.展开更多
Analyzes the mechanism of overvoltage when contactless tap changer switch which is applied in distributing transformer converted directly.When the device convert the tap off,it employs the way that the SSR is switche...Analyzes the mechanism of overvoltage when contactless tap changer switch which is applied in distributing transformer converted directly.When the device convert the tap off,it employs the way that the SSR is switched on when voltage through zero and switched off when current through zero.But in the experiment we found that overvoltage will occur in the process of changing tap changer.The paper illustrates the mechanism of overvoltage in theory by analyzing the equivalent circuit and using analytic method of transition process.展开更多
Because of the complexity and difficulty of realizing a multi-wavelength soliton state,reports on its internal dynamic characteristics are scarce.In this study,the switching and periodic soliton explosion processes of...Because of the complexity and difficulty of realizing a multi-wavelength soliton state,reports on its internal dynamic characteristics are scarce.In this study,the switching and periodic soliton explosion processes of the multi-wavelength soliton state in a negative dispersion passively mode-locked fiber laser are realized.The generation of the multi-wavelength soliton state undergoes the process of noise,oscillation,and stable mode-locking,and the splitting and annihilation of solitons with different group velocities directly impact the generation and disappearance of three wavelengths.Positive and negative dispersion lead to different group velocities of solitons.The presence and displacement of solitons with different group velocities cause soliton collisions,which lead to soliton explosions.A soliton experiences relative phase oscillation,chaos,and oscillation,as well as convergence and separation before and after an explosion.With an increase in parameters related to pump power,single-soliton oscillation,multi-wavelength solitons,and chaos are found in experiments and simulations,proving the relevance and reliability between simulation and experimental results.This work promotes the dynamical study of multi-soliton collisions in nonlinear science and the development of chaos theory in multi-comb lasers.展开更多
New idea of stabilization for discrete linear multiple-input system is proposed based on switching technique and single-input control. The system discussed here denotes coupled singleinput objects to be controlled. Th...New idea of stabilization for discrete linear multiple-input system is proposed based on switching technique and single-input control. The system discussed here denotes coupled singleinput objects to be controlled. The central processing unit chooses an object at each discrete instant according to periodic switching strategy and controls it by local state feedback. Stabilization of a multiple-input system is turned into stabilization of single-input systems under periodic switching strategy, which is easy to be realized in practice. On the other hand, only one central processing unit can realize all local controllers, which decreases the cost and increases the usage of the resources.展开更多
基金the National Natural Science Foundation of China(No.60674027)China Postdoctoral Science Foundation(No.20070410336)the Postdoctor Foundation of Jiangsu Province(No.0602042B).
文摘A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.
文摘An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means of the fact that in steady state, the two boundary values are equal in one switching period. The exponential matrix is evaluated by precise time-domain-integration method, and then the related curve between feedback duty cycle and the input one is obtained. Not only can the steady-state duty cycle be found from the curve, but also the stability and stable domain of the system. Compared with other methods, it features with simplicity and less calculation, and fit for numerical simulation and analysis for closed-loop switching converters. The simulation results of examples indicate the correctness of the presented method.
文摘This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dependent switching strategy, in which the switching instants must be given in advance, the state-dependent switching strategy is used to design switching signals. Based on multiple Lyapunov-like functions method, several criteria for switched nonlinear systems to be finite-time H<sub>∞</sub> control are derived. Finally, a numerical example with simulation results is provided to show the validity of the conclusions.
文摘This paper studies the problem of robust H∞ output feedback controller via state-reset for linear uncertain discrete-time switched systems. Using multiple Lyapunov functions,we address an output feedback controller under arbitrary switching signals,in which an H∞ performance is required. The condition is shown in the form of linear matrix inequalities (LMI). Finally,a numerical example shows the feasibility of the designed controller and illustrates that the new sufficient condition has lower conservation and more optimized H∞ tfperformance.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 60637010 and 60671036)the National Basic Research Program of China (Grant No 2007CB310403)Tianjin Applied Fundamental Research Project (Grant No07JCZDJC05900)
文摘We have made a gain-switched all-solid-state quasi-continuous-wave (QCW) tunable Ti:sapphire laser system, which is pumped by a 532 nm intracavity frequency-doubled Nd:YAG laser. Based on the theory of gain-switching and the study on the influencing factors of the output pulse width, an effective method for obtaining high power and narrow pulse width output is proposed. Through deliberately designing the pump source and the resonator of the Ti:sapphire laser, when the repetition rate is 6 kHz and the length of the cavity is 220 mm, at an incident pump power of 22 W, the tunable Ti:sapphire laser from 700 to 950nm can be achieved. It has a maximum average output power of 5.6W at 800nm and the pulse width of 13.2 ns, giving an optical conversion efficiency of 25.5% from the 532 mn pump laser to the Ti:sapphire laser.
基金supported partly by the National Natural Science Foundation of China(6057400660835001)+1 种基金the Key Project of Chinese Ministry of Education(108060)the Jiangsu Planned Projects for Postdoctoral Research Funds(0802010c).
文摘The problem of admissibility analysis and control synthesis of discrete-time switched linear singular (SLS) systems for arbitrary switching laws is solved. By using the switched Lyapunov function approach, some new sufficient conditions under which the SLS system is admissible for arbitrary switching laws are derived in terms of linear matrix inequalities (LMIs). Based on the admissibility results, control synthesis is then to design switched state feedback and static output feedback controllers, guaranteeing that the resulting closed-loop system is admissible. The presented results can be viewed as the extensions of previous works on switched Lyapunov function approach from the regular switched systems to singular switched cases. Examples are provided to demonstrate the reduced conservatism and effectiveness of the proposed conditions.
基金supported in part by the Japan Ministry of Education,Sciences and Culture under Grants-in-Aid for Scientific Research(C)(21560471)the Green Industry Leading Program of Hubei University of Technology(CPYF2017003)the National Natural Science Foundation of China(1160147411461082)
文摘We consider quadratic stabilization for a class of switched systems which are composed of a finite set of continuoustime linear subsystems with norm bounded uncertainties. Under the assumption that there is no single quadratically stable subsystem, if a convex combination of subsystems is quadratically stable, then we propose a state-dependent switching law, based on the convex combination of subsystems, such that the entire switched linear system is quadratically stable. When the state information is not available, we extend the discussion to designing an outputdependent switching law by constructing a robust Luenberger observer for each subsystem.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378024)
文摘A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical evaporation method.By inserting the WS2 SA into the plano-concave laser cavity,we achieve 153-ns pulses with an average output power of1.19 W at 1064 nm.To the best of our knowledge,both of them are the best results among those obtained by the Q-switched solid-state lasers with WS_2-based absorbers.The repetition rate ranges from 1.176 MHz to 1.578 MHz.As far as we know,it is the first time that MHz level Q-switched pulses have been generated in all solid state lasers based on low-dimensional materials so far.
基金Harbin science an technology officecontract num ber is 0 0 112 110 98
文摘Analyzes the mechanism of overvoltage when contactless tap changer switch which is applied in distributing transformer converted directly.When the device convert the tap off,it employs the way that the SSR is switched on when voltage through zero and switched off when current through zero.But in the experiment we found that overvoltage will occur in the process of changing tap changer.The paper illustrates the mechanism of overvoltage in theory by analyzing the equivalent circuit and using analytic method of transition process.
基金supported by the National Natural Science Foundation of China(Grant Nos.12261131495,12075210,and 12275240)the Scientific Research and Development Fund of Zhejiang A&F University(Grant No.2021FR0009)。
文摘Because of the complexity and difficulty of realizing a multi-wavelength soliton state,reports on its internal dynamic characteristics are scarce.In this study,the switching and periodic soliton explosion processes of the multi-wavelength soliton state in a negative dispersion passively mode-locked fiber laser are realized.The generation of the multi-wavelength soliton state undergoes the process of noise,oscillation,and stable mode-locking,and the splitting and annihilation of solitons with different group velocities directly impact the generation and disappearance of three wavelengths.Positive and negative dispersion lead to different group velocities of solitons.The presence and displacement of solitons with different group velocities cause soliton collisions,which lead to soliton explosions.A soliton experiences relative phase oscillation,chaos,and oscillation,as well as convergence and separation before and after an explosion.With an increase in parameters related to pump power,single-soliton oscillation,multi-wavelength solitons,and chaos are found in experiments and simulations,proving the relevance and reliability between simulation and experimental results.This work promotes the dynamical study of multi-soliton collisions in nonlinear science and the development of chaos theory in multi-comb lasers.
基金Supported by National Natural Science Foundation of P. R. China (60274009 and 69934010)Specialized Research Fund for the Doctoral Program of Higher Education (20020145007)Doctoral Foundation of P. R. China (2003033500)Technological Foundation of Southeast University (9802001472)
文摘New idea of stabilization for discrete linear multiple-input system is proposed based on switching technique and single-input control. The system discussed here denotes coupled singleinput objects to be controlled. The central processing unit chooses an object at each discrete instant according to periodic switching strategy and controls it by local state feedback. Stabilization of a multiple-input system is turned into stabilization of single-input systems under periodic switching strategy, which is easy to be realized in practice. On the other hand, only one central processing unit can realize all local controllers, which decreases the cost and increases the usage of the resources.