期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Unsupervised Time Series Segmentation: A Survey on Recent Advances
1
作者 Chengyu Wang Xionglve Li +1 位作者 Tongqing Zhou Zhiping Cai 《Computers, Materials & Continua》 SCIE EI 2024年第8期2657-2673,共17页
Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on t... Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on time series segmentation,most of them focus more on change point detection(CPD)methods and overlook the advances in boundary detection(BD)and state detection(SD)methods.In this paper,we categorize time series segmentation methods into CPD,BD,and SD methods,with a specific focus on recent advances in BD and SD methods.Within the scope of BD and SD,we subdivide the methods based on their underlying models/techniques and focus on the milestones that have shaped the development trajectory of each category.As a conclusion,we found that:(1)Existing methods failed to provide sufficient support for online working,with only a few methods supporting online deployment;(2)Most existing methods require the specification of parameters,which hinders their ability to work adaptively;(3)Existing SD methods do not attach importance to accurate detection of boundary points in evaluation,which may lead to limitations in boundary point detection.We highlight the ability to working online and adaptively as important attributes of segmentation methods,the boundary detection accuracy as a neglected metrics for SD methods. 展开更多
关键词 time series segmentation time series state detection boundary detection change point detection
下载PDF
The improved local linear prediction of chaotic time series 被引量:2
2
作者 孟庆芳 彭玉华 孙佳 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3220-3225,共6页
Based on the Bayesian information criterion, this paper proposes the improved local linear prediction method to predict chaotic time series. This method uses spatial correlation and temporal correlation simultaneously... Based on the Bayesian information criterion, this paper proposes the improved local linear prediction method to predict chaotic time series. This method uses spatial correlation and temporal correlation simultaneously. Simulation results show that the improved local linear prediction method can effectively make multi-step and one-step prediction of chaotic time series and the multi-step prediction performance and one-step prediction accuracy of the improved local linear prediction method are superior to those of the traditional local linear prediction method. 展开更多
关键词 local linear prediction Bayesian information criterion state space reconstruction chaotic time series
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部