Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the ...Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization(NGO)algorithm,particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes,this study introduces an advanced Improved Northern Goshawk Optimization(INGO)algorithm.This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency.Initially,a tent chaotic map is employed in the initialization phase to generate a diverse initial population,providing high-quality feasible solutions.Subsequently,after the first phase of the NGO’s iterative process,a whale fall strategy is introduced to prevent premature convergence into local optima.This is followed by the integration of T-distributionmutation strategies and the State Transition Algorithm(STA)after the second phase of the NGO,achieving a balanced synergy between the algorithm’s exploitation and exploration.This research evaluates the performance of INGO using 23 benchmark functions alongside the IEEE CEC 2017 benchmark functions,accompanied by a statistical analysis of the results.The experimental outcomes demonstrate INGO’s superior achievements in function optimization tasks.Furthermore,its applicability in solving engineering design problems was verified through simulations on Unmanned Aerial Vehicle(UAV)trajectory planning issues,establishing INGO’s capability in addressing complex optimization challenges.展开更多
蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的...蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)上,融合蚁群算法和遗传算法,并将顾客时间窗宽度以及机器人等待时间加入蚁群算法状态转移公式中,以及将蚁群算法的解作为遗传算法的初始种群,提高遗传算法的初始解质量,然后进行编码,设置违反时间窗约束和载重量的惩罚函数和适应度函数,在传统遗传算法的交叉、变异操作后加入了破坏-修复基因的操作来优化每一代新解的质量,在Solomon Benchmark算例上进行仿真,对比算法改进前后的最优解,验证算法可行性。最后在餐厅送餐问题中把带有障碍物的仿真环境路径规划问题和VRPTW问题结合,使用改进后的算法解决餐厅环境下送餐机器人对顾客服务配送问题。展开更多
针对风力发电机组变桨系统故障诊断模型参数难以优化问题,提出了基于状态转移算法优化多类最优间隔分布机(multi-class Optimal Margin Distribution Machine optimized by the State Transition Algorithm,mcODM-STA)的风电机组变桨系...针对风力发电机组变桨系统故障诊断模型参数难以优化问题,提出了基于状态转移算法优化多类最优间隔分布机(multi-class Optimal Margin Distribution Machine optimized by the State Transition Algorithm,mcODM-STA)的风电机组变桨系统故障诊断方法.该方法选择风电机组功率输出作为主要状态参数,利用Pearson相关系数对风电数据采集与监视控制系统中风电机组历史运行数据进行相关性分析,剔除与功率输出状态参数相关性较低的特征,对余下特征进行二次分析,减少样本特征.将数据集分为训练集和测试集,训练集用来训练所提故障诊断模型,测试集用来进行测试.利用国内风电场实际运行数据进行实验验证.实验结果表明,与其他多种参数优化方法相比,所提方法故障诊断准确率和Kappa系数更高.展开更多
Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and s...Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and switching operation constraints, DRPO is formulated as a nonlinear constrained two-objective optimization problem in this paper. The first objective is to minimize the real power loss and the Total Voltage Deviations(TVDs), and the second objective is to minimize incremental system loss. Then a Filter Collaborative State Transition Algorithm(FCSTA) is presented for solving DRPO problems. Two populations corresponding to two different objectives are employed. Moreover, the filter technique is utilized to deal with constraints. Finally, the effectiveness of the proposed method is demonstrated through the results obtained for a 24-hour test on Ward & Hale 6 bus, IEEE 14 bus, and IEEE 30 bus test power systems. To substantiate the effectiveness of the proposed algorithms, the obtained results are compared with different approaches in the literature.展开更多
A mathematical management model’s added value is obtained only after the design and implementation of a user-friendly operating and usage tool. Fol-lowing work on developing an automated inventory management system a...A mathematical management model’s added value is obtained only after the design and implementation of a user-friendly operating and usage tool. Fol-lowing work on developing an automated inventory management system and/or supplies, a dynamic model for the rational management of product stocks was established. Its implementation aims to limit or eliminate over-stocking and/or stock depletion. The orderable quantity prediction tool based on a settable and preset time period demonstrates the added value of incorporating probabilistic mathematical principles into supply management processes. In this context, this article discusses aspects of the design and implementation of random demand management algorithms based on Mar-kov chains. The goal is to forecast the state or behavior of goods marketing company’s product stocks and to develop a user supply management inter-face. The latter’s functional application will ultimately demonstrate the ac-curacy of the model. This paper also looks at how to use Markov chains to predict the reliability of any technical device, as well as how to implement an automated system with the desired technical specifications.展开更多
基金supported by theKey Research and Development Project of Hubei Province(No.2023BAB094)the Key Project of Science and Technology Research Program of Hubei Educational Committee(No.D20211402)the Open Foundation of HubeiKey Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System(No.HBSEES202309).
文摘Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization(NGO)algorithm,particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes,this study introduces an advanced Improved Northern Goshawk Optimization(INGO)algorithm.This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency.Initially,a tent chaotic map is employed in the initialization phase to generate a diverse initial population,providing high-quality feasible solutions.Subsequently,after the first phase of the NGO’s iterative process,a whale fall strategy is introduced to prevent premature convergence into local optima.This is followed by the integration of T-distributionmutation strategies and the State Transition Algorithm(STA)after the second phase of the NGO,achieving a balanced synergy between the algorithm’s exploitation and exploration.This research evaluates the performance of INGO using 23 benchmark functions alongside the IEEE CEC 2017 benchmark functions,accompanied by a statistical analysis of the results.The experimental outcomes demonstrate INGO’s superior achievements in function optimization tasks.Furthermore,its applicability in solving engineering design problems was verified through simulations on Unmanned Aerial Vehicle(UAV)trajectory planning issues,establishing INGO’s capability in addressing complex optimization challenges.
文摘蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)上,融合蚁群算法和遗传算法,并将顾客时间窗宽度以及机器人等待时间加入蚁群算法状态转移公式中,以及将蚁群算法的解作为遗传算法的初始种群,提高遗传算法的初始解质量,然后进行编码,设置违反时间窗约束和载重量的惩罚函数和适应度函数,在传统遗传算法的交叉、变异操作后加入了破坏-修复基因的操作来优化每一代新解的质量,在Solomon Benchmark算例上进行仿真,对比算法改进前后的最优解,验证算法可行性。最后在餐厅送餐问题中把带有障碍物的仿真环境路径规划问题和VRPTW问题结合,使用改进后的算法解决餐厅环境下送餐机器人对顾客服务配送问题。
文摘针对风力发电机组变桨系统故障诊断模型参数难以优化问题,提出了基于状态转移算法优化多类最优间隔分布机(multi-class Optimal Margin Distribution Machine optimized by the State Transition Algorithm,mcODM-STA)的风电机组变桨系统故障诊断方法.该方法选择风电机组功率输出作为主要状态参数,利用Pearson相关系数对风电数据采集与监视控制系统中风电机组历史运行数据进行相关性分析,剔除与功率输出状态参数相关性较低的特征,对余下特征进行二次分析,减少样本特征.将数据集分为训练集和测试集,训练集用来训练所提故障诊断模型,测试集用来进行测试.利用国内风电场实际运行数据进行实验验证.实验结果表明,与其他多种参数优化方法相比,所提方法故障诊断准确率和Kappa系数更高.
基金supported by the National Natural Science Foundation of China(Nos.51767022 and 51575469)
文摘Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and switching operation constraints, DRPO is formulated as a nonlinear constrained two-objective optimization problem in this paper. The first objective is to minimize the real power loss and the Total Voltage Deviations(TVDs), and the second objective is to minimize incremental system loss. Then a Filter Collaborative State Transition Algorithm(FCSTA) is presented for solving DRPO problems. Two populations corresponding to two different objectives are employed. Moreover, the filter technique is utilized to deal with constraints. Finally, the effectiveness of the proposed method is demonstrated through the results obtained for a 24-hour test on Ward & Hale 6 bus, IEEE 14 bus, and IEEE 30 bus test power systems. To substantiate the effectiveness of the proposed algorithms, the obtained results are compared with different approaches in the literature.
文摘A mathematical management model’s added value is obtained only after the design and implementation of a user-friendly operating and usage tool. Fol-lowing work on developing an automated inventory management system and/or supplies, a dynamic model for the rational management of product stocks was established. Its implementation aims to limit or eliminate over-stocking and/or stock depletion. The orderable quantity prediction tool based on a settable and preset time period demonstrates the added value of incorporating probabilistic mathematical principles into supply management processes. In this context, this article discusses aspects of the design and implementation of random demand management algorithms based on Mar-kov chains. The goal is to forecast the state or behavior of goods marketing company’s product stocks and to develop a user supply management inter-face. The latter’s functional application will ultimately demonstrate the ac-curacy of the model. This paper also looks at how to use Markov chains to predict the reliability of any technical device, as well as how to implement an automated system with the desired technical specifications.