The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
This editorial article is intended to perform a discussion on the manuscript entitled“Simultaneous portal vein thrombosis and splenic vein thrombosis in a COVID-19 patient:A case report and review of literature”writ...This editorial article is intended to perform a discussion on the manuscript entitled“Simultaneous portal vein thrombosis and splenic vein thrombosis in a COVID-19 patient:A case report and review of literature”written by Abramowitz et al.The article focuses on the diagnostic processes in a 77-year-old-male patient with a simultaneous portal vein and splenic artery thrombosis accompanying coronavirus disease 2019(COVID-19).The authors postulated that splanchnic thrombosis should be on the list of differential diagnoses in a patient presenting with abdominal pain in presence of a COVID-19 infection.The tendency for venous and arterial thrombosis in COVID-19 patients is encountered,largely attributed to hypercoagulopathy.In general,venous thromboembolism mostly manifest as deep vein thrombosis(DVT),pulmonary embolism(PE)or catheterrelated thromboembolic events.Acute PE,DVT,cerebrovascular events and myocardial infarction are seen as the most common thromboembolic complications in COVID-19 patients.COVID-19-associated hemostatic abnormalities include mild thrombocytopenia and increased D-dimer level.Similar to other coagulopathies,the treatment of the underlying condition is the mainstay.Addition of antiplatelet agents can be considered in critically ill patients at low bleeding risk,not on therapeutic anticoagulation,and receiving gastric acid suppression Early administration of antithrombotic drugs will have a beneficial effect in both the prevention and treatment of thrombotic events,especially in non-ambulatory patients.Low molecular weight heparin(LMWH)should be started if there is no contraindication,including in non-critical patients who are at risk of hospitalization LMWH(enoxaparin)is preferred to standard heparin.展开更多
Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant...Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation.展开更多
We present an efficient scheme for the complete analysis of hyperentangled Greenberger–Horne–Zeilinger(GHZ)state in polarization and time-bin degrees of freedom with two steps. Firstly, the polarization GHZ state is...We present an efficient scheme for the complete analysis of hyperentangled Greenberger–Horne–Zeilinger(GHZ)state in polarization and time-bin degrees of freedom with two steps. Firstly, the polarization GHZ state is distinguished completely and nondestructively, resorting to the controlled phase flip(CPF) gate constructed by the cavity-assisted interaction. Subsequently, the time-bin GHZ state is analyzed by using the preserved polarization entanglement. With the help of CPF gate and self-assisted mechanism, our scheme can be directly generalized to the complete N-photon hyperentangled GHZ state analysis, and it may have potential applications in the hyperentanglement-based quantum communication.展开更多
A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and ...A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and safety and reliability analyses are increasingly required for these systems.SEFTs combine elements from the traditional fault tree with elements from state-based techniques.In the context of the real-time safety-critical systems,SEFTs do not describe the time properties and important timedependent system behaviors that can lead to system failures.Further,SEFTs lack the precise semantics required for formally modeling time behaviors.In this paper,we present a qualitative analysis method for SEFTs based on transformation from SEFT to timed automata(TA),and use the model checker UPPAAL to verify system requirements’properties.The combination of SEFT and TA is an important step towards an integrated design and verification process for real-time safety-critical systems.Finally,we present a case study of a powerboat autopilot system to confirm our method is viable and valid after achieving the verification goal step by step.展开更多
We propose a scheme capable of performing complete Bell-state analysis for a single-photon hybrid entangled state.Our single-photon state is encoded in both polarization and frequency degrees of freedom.The setup of t...We propose a scheme capable of performing complete Bell-state analysis for a single-photon hybrid entangled state.Our single-photon state is encoded in both polarization and frequency degrees of freedom.The setup of the scheme is composed of polarizing beam splitters,half wave plates,frequency shifters,and independent wavelength division multiplexers,which are feasible using current technology.We also show that with this setup we can perform complete two-photon Bell-state analysis schemes for polarization degrees of freedom.Moreover,it can also be used to perform the teleportation scheme between different degrees of freedom.This setup may allow extensive applications in current quantum communications.展开更多
In the ultrasonic nondestructive evaluation of the quality of solid state welded joints, such as friction bonding and diffusion bonding, the main difficulty is the identification of micro defects which are most likel...In the ultrasonic nondestructive evaluation of the quality of solid state welded joints, such as friction bonding and diffusion bonding, the main difficulty is the identification of micro defects which are most likely to emerge in the welding process. The ultrasonic echo on the screen of a commercial ultrasonic detector due to a micro defect is so weak that it is completely masked by noise, and impossible to be pointed out. In the present paper, wavelet analysis (WA) is utilized to process A scan ultrasonic signals from weak bonding defects in friction bonding joints and porosity in diffusion bonding joints. First, perception of WA for engineers is given, which demonstrates the physical mechanism of WA when applied to signal processing. From this point of view, WA can be understood easily and more thoroughly. Then the signals from welding joints are decomposed into a time scale plane by means of WA. We notice that noise and the signal echo attributed to the micro defect occupy different scales, which make it possible to enhance the signal to noise ratio of the signals by proper selection and threshold processing of the time scale components of the signals, followed by reconstruction of the processed components.展开更多
The propagation of single-event effects(SEEs)on a Xilinx Zynq-7000 system on chip(SoC)was inves-tigated using heavy-ion microbeam radiation.The irradia-tion results reveal several functional blocks’sensitivity locati...The propagation of single-event effects(SEEs)on a Xilinx Zynq-7000 system on chip(SoC)was inves-tigated using heavy-ion microbeam radiation.The irradia-tion results reveal several functional blocks’sensitivity locations and cross sections,for instance,the arithmetic logic unit,register,D-cache,and peripheral,while irradi-ating the on-chip memory(OCM)region.Moreover,event tree analysis was executed based on the obtained microbeam irradiation results.This study quantitatively assesses the probabilities of SEE propagation from the OCM to other blocks in the SoC.展开更多
Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, ...Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, and an active and standby redundancy (AS) tree structure method to describe the system structure of each mission phase is brought forward. Secondly, the behavior of the phased-mission system with multiple states is discussed with the theory of state chart. Thirdly, basing on the discrete event simulation concept, a simulation algorithm to estimate reliability parameters of the phased-mission system with multiple states is explored. Finally, an example is introduced and analyzed, and the analysis result verifies the algorithms. The simulation algorithm is practical and versatile, for it can model complex behavior of phased-mission system flexibly, and more reliability parameters to understand system operation can be attained.展开更多
Due to the increasing demand for security, the development of intelligent surveillance systems has attracted considerable attention in recent years. This study aims to develop a system that is able to identify whether...Due to the increasing demand for security, the development of intelligent surveillance systems has attracted considerable attention in recent years. This study aims to develop a system that is able to identify whether or not the people need help in a public place. Different from previous work, our work considers not only the behaviors of the target person but also the interaction between him and nearby people. In the paper, we propose an event alarm system which can detect the human behaviors and recognize the happening event through integrating the results generated from the single and group behavior analysis. Several new effective features are proposed in the study. Besides, a mechanism capable of extracting one-to-one and multiple-to-one relations is also developed. Experimental results show that the proposed approach can correctly detect human behaviors and provide the alarm messages when emergency events occur.展开更多
An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology ...An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology leverages numerical techniques in nonlinear observability analysis to enable online evaluation of the system observability and indication of the state estimation performance.Specifically,an empirical observability Gramian based approach is introduced to efficiently measure the observability condition of the windowed nonlinear system,and a scalar index is proposed to quantify the average system observability.The proposed approach is specialized to a challenging optimizationbased sliding window monocular visual-inertial state estimation formulation and evaluated through simulation and experiments to assess the efficacy of the methodology.The analysis result shows that the proposed approach can correctly indicate degradation of the state estimation accuracy with real-time performance.展开更多
For the system with the fuzzy failure state, the effects of the input random variables and the fuzzy failure state on the fuzzy probability of failure for the structural system are studied, and the moment-independence...For the system with the fuzzy failure state, the effects of the input random variables and the fuzzy failure state on the fuzzy probability of failure for the structural system are studied, and the moment-independence global sensitivity analysis(GSA) model is proposed to quantitatively measure these effects. According to the fuzzy random theory, the fuzzy failure state is transformed into an equivalent new random variable for the system, and the complementary function of the membership function of the fuzzy failure state is defined as the cumulative distribution function(CDF) of the new random variable. After introducing the new random variable, the equivalent performance function of the original problem is built. The difference between the unconditional fuzzy probability of failure and conditional fuzzy probability of failure is defined as the moment-independent GSA index. In order to solve the proposed GSA index efficiently, the Kriging-based algorithm is developed to estimate the defined moment-independence GSA index. Two engineering examples are employed to verify the feasibility and rationality of the presented GSA model, and the advantages of the developed Kriging method are also illustrated.展开更多
We present a deterministic nondestructive hyperentangled Bell state analysis protocol for photons entangled in three degrees of freedom(DOFs),including polarization,spatial-mode,and time-bin DOFs.The polarization Bell...We present a deterministic nondestructive hyperentangled Bell state analysis protocol for photons entangled in three degrees of freedom(DOFs),including polarization,spatial-mode,and time-bin DOFs.The polarization Bell state analyzer and spatial-mode Bell state analyzer are constructed by polarization parity-check quantum nondemolition detector(P-QND)and spatial-mode parity-check quantum nondemolition detector(S-QND)using cross-Kerr nonlinearity,respectively.The time-bin Bell state analyzer is constructed by the swap gate for polarization state and time-bin state of a photon(P-T swap gate)and P-QND.The Bell states analyzer for one DOF will not destruct the Bell states of other two DOFs,so the polarization-spatial-time-bin hyperentangled Bell states can be determinately distinguished without destruction.This deterministic nondestructive state analysis method has useful applications in quantum information protocols.展开更多
Semantic video analysis plays an important role in the field of machine intelligence and pattern recognition. In this paper, based on the Hidden Markov Model (HMM), a semantic recognition framework on compressed video...Semantic video analysis plays an important role in the field of machine intelligence and pattern recognition. In this paper, based on the Hidden Markov Model (HMM), a semantic recognition framework on compressed videos is proposed to analyze the video events according to six low-level features. After the detailed analysis of video events, the pattern of global motion and five features in foreground—the principal parts of videos, are employed as the observations of the Hidden Markov Model to classify events in videos. The applications of the proposed framework in some video event detections demonstrate the promising success of the proposed framework on semantic video analysis.展开更多
Objective The Yangtze craton collisional orogeny at ca. extensional events at ca. 1 experienced Paleoproterozoic 1.95-2.0 Ga and post-orogenic 85 Ga related to amalgamation of the Columbia (Nuna) supercontinent (Zh...Objective The Yangtze craton collisional orogeny at ca. extensional events at ca. 1 experienced Paleoproterozoic 1.95-2.0 Ga and post-orogenic 85 Ga related to amalgamation of the Columbia (Nuna) supercontinent (Zhao and Cawood, 2012). A ca. 2.15 Ga suprasubduction zone ophiolitic melange was recongized in the Archean- Paleoproterozoic Kongling Complex of the northern Yangtze craton (Han et al., 2017). However, the tectonic evolution in early Paleoproterozoic from 2.4 Ga to 2.2 Ga remains unclear. We report here the presence of a suite of Paleoproterozoic (2.2 Ga) granites in the Huangling dome, northern Yangtze craton, which may provide important insights into crustal growth processes in the craton prior to the assembly of Columbia.展开更多
This paper discusses some methodological aspects for the production of susceptibility maps of slope instability developed within the CARG Project (Geological Cartography of Italy at 1:50,000 scale). It describes an ex...This paper discusses some methodological aspects for the production of susceptibility maps of slope instability developed within the CARG Project (Geological Cartography of Italy at 1:50,000 scale). It describes an example of a susceptibility map in the presence of low susceptibility, using database having zero or negligible cost, with the aim to test some methodologies that can be easily reproducible to get a first estimate of the landslide susceptibility on a wide area. Two statistical approaches have been applied: the non-parametric conditional analysis and the logistic analysis for rare events. The predictive ability obtained from the two methodologies, was evaluated by the success-prediction curves for the conditional analysis, and by the Receiver Operating Characteristic curve (ROC), for the logistic model. The landslide susceptibility maps have been classified into four classes using both the Natural Breaks algorithm and the method proposed by Chung and Fabbri (2003). The paper considers the influence of these two classification methods on the quality of final results.展开更多
AIM To investigate indications and outcomes of endoscopic retrograde cholangiopancreatography(ERCP) in cirrhotics, especially adverse events. Patients with cirrhosis undergoing ERCP are believed to have increased risk...AIM To investigate indications and outcomes of endoscopic retrograde cholangiopancreatography(ERCP) in cirrhotics, especially adverse events. Patients with cirrhosis undergoing ERCP are believed to have increased risk. However, there is a paucity of literature describing the indications and outcomes of ERCP procedures in patients with cirrhosis, especially focusing on adverse events.METHODS We performed a systematic appraisal of major literature databases, including PubMed and EMBASE, with a manual search of literature from their inception until April 2017.RESULTS A total of 6,505 patients from 15 studies were analyzed(male ratio 59%, mean age 59 years), 11% with alcoholic and 89% with non-alcoholic cirrhosis, with 56.2% Child-Pugh class A, and 43.8% class B or C. Indications for ERCP included choledocholithiasis 60.9%, biliary strictures 26.2%, gallstone pancreatitis 21.1% and cholangitis 15.5%. Types of interventions included endoscopic sphincterotomy 52.7%, biliary stenting 16.7% and biliary dilation 4.6%. Individual adverse events included hemorrhage in 4.58%(95%CI: 2.77-6.75%, I^2 = 85.9%), post-ERCP pancreatitis(PEP) in 3.68%(95%CI: 1.83-6.00%, I^2 = 89.5%), cholangitis in 1.93%(95%CI: 0.63-3.71%, I^2 = 87.1%) and perforation in 0.00%(95%CI: 0.00-0.23%, I^2 = 37.8%). Six studies were used for comparison of ERCPrelated complications in cirrhosis vs non-cirrhosis, which showed higher overall rates of complications in cirrhosis patients with pooled OR of 1.63(95%CI: 1.27-2.09, I2 = 65%): higher rates of hemorrhage with OR of 2.05(95%CI: 1.62-2.58, I^2 = 2.1%) and PEP with OR of 1.33(95%CI: 1.04-1.70, I2=65%), but similar cholangitis rates with OR of 1.23(95%CI: 0.67-2.26, I^2 = 44.3%).CONCLUSION There is an overall higher rate of adverse events related to ERCP in patients with cirrhosis, especially hemorrhage and PEP. A thorough risk/benefit assessment should be performed prior to undertaking ERCP in patients with cirrhosis.展开更多
Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charg...Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.展开更多
Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 ...Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 were analyzed.For the TGR,the average annual temperature for 2022 and 2023 was 0.8℃ and 0.4℃ higher than normal,respectively,making them the two warmest years in the past decade.In 2022,the TGR experienced its warmest summer on record.The average air temperature was 2.4℃ higher than the average,and there were 24.8 days of above-average high temperature days during summer.Rainfall in the TGR varied significantly between 2022 and 2023.Annual rainfall was 18.4%below normal and drier than normal in most parts of the region.In contrast,the precipitation in 2023 was considerably higher than the long-term average,and above normal for almost the entire year.The average wind speed exhibited minimal variation between the two years.However,the number of foggy days and relative humidity increased in 2023 compared to 2022.In 2022–2023,the TGR mainly experienced meteorological disasters such as extreme high temperatures,regional heavy rain and flooding,overcast rain,and inverted spring chill.Analysis indicates that the abnormal western Pacific subtropical high and the abnormal persistence of the eastward-shifted South Asian high were the two important drivers of the durative enhancement of record-breaking high temperature in the summer of 2022.展开更多
This paper interrogates the impact of policy events on the efficiency of carbon market in China.The analysis covers five piloting emission trading schemes(Beijing, Shanghai, Guangdong,Shenzhen and Hubei), particularly...This paper interrogates the impact of policy events on the efficiency of carbon market in China.The analysis covers five piloting emission trading schemes(Beijing, Shanghai, Guangdong,Shenzhen and Hubei), particularly focusing on Guangdong pilot for its weak form efficiency and the richness of policy events. Twenty-five policy events between 2014 and 2016 are categorized into seven groups. The efficiency test indicates that only Guangdong ETS has reached weak form efficiency. After exploring the policy events occurred in Guangdong ETS, it finds that although a clear long-term climate policy has been set up over the country, China's carbon market still has a conservative risk appetite and its governing institutions still needs further development. The policy makers need to be aware of and avoid the negative impacts of policy events to the market evolvement, by introducing effective consultancy process with the stakeholders and nurturing market expectations in the long run. We also find that events like allowance auctions have considerably less impacts than previously expected and argue that auction approach should be considered a preferable option over a free allocation system in the future policy design.展开更多
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
文摘This editorial article is intended to perform a discussion on the manuscript entitled“Simultaneous portal vein thrombosis and splenic vein thrombosis in a COVID-19 patient:A case report and review of literature”written by Abramowitz et al.The article focuses on the diagnostic processes in a 77-year-old-male patient with a simultaneous portal vein and splenic artery thrombosis accompanying coronavirus disease 2019(COVID-19).The authors postulated that splanchnic thrombosis should be on the list of differential diagnoses in a patient presenting with abdominal pain in presence of a COVID-19 infection.The tendency for venous and arterial thrombosis in COVID-19 patients is encountered,largely attributed to hypercoagulopathy.In general,venous thromboembolism mostly manifest as deep vein thrombosis(DVT),pulmonary embolism(PE)or catheterrelated thromboembolic events.Acute PE,DVT,cerebrovascular events and myocardial infarction are seen as the most common thromboembolic complications in COVID-19 patients.COVID-19-associated hemostatic abnormalities include mild thrombocytopenia and increased D-dimer level.Similar to other coagulopathies,the treatment of the underlying condition is the mainstay.Addition of antiplatelet agents can be considered in critically ill patients at low bleeding risk,not on therapeutic anticoagulation,and receiving gastric acid suppression Early administration of antithrombotic drugs will have a beneficial effect in both the prevention and treatment of thrombotic events,especially in non-ambulatory patients.Low molecular weight heparin(LMWH)should be started if there is no contraindication,including in non-critical patients who are at risk of hospitalization LMWH(enoxaparin)is preferred to standard heparin.
文摘Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation.
文摘We present an efficient scheme for the complete analysis of hyperentangled Greenberger–Horne–Zeilinger(GHZ)state in polarization and time-bin degrees of freedom with two steps. Firstly, the polarization GHZ state is distinguished completely and nondestructively, resorting to the controlled phase flip(CPF) gate constructed by the cavity-assisted interaction. Subsequently, the time-bin GHZ state is analyzed by using the preserved polarization entanglement. With the help of CPF gate and self-assisted mechanism, our scheme can be directly generalized to the complete N-photon hyperentangled GHZ state analysis, and it may have potential applications in the hyperentanglement-based quantum communication.
基金supported by the National Natural Science Foundation of China(11832012)
文摘A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and safety and reliability analyses are increasingly required for these systems.SEFTs combine elements from the traditional fault tree with elements from state-based techniques.In the context of the real-time safety-critical systems,SEFTs do not describe the time properties and important timedependent system behaviors that can lead to system failures.Further,SEFTs lack the precise semantics required for formally modeling time behaviors.In this paper,we present a qualitative analysis method for SEFTs based on transformation from SEFT to timed automata(TA),and use the model checker UPPAAL to verify system requirements’properties.The combination of SEFT and TA is an important step towards an integrated design and verification process for real-time safety-critical systems.Finally,we present a case study of a powerboat autopilot system to confirm our method is viable and valid after achieving the verification goal step by step.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11104159,61201164,and 61271238)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics Scientific,Tsinghua University,China+2 种基金the Open Research Fund Program of National Laboratory of Solid State Microstructures,Nanjing University,China (Grant Nos. M25020 and M25022)the Priority Academic Development Program of Jiangsu Higher Education Institutions,China,the Open Research Fund of National Mobile Communications Research Laboratory of Southeast University,China (Grant No. 2011D05)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003)
文摘We propose a scheme capable of performing complete Bell-state analysis for a single-photon hybrid entangled state.Our single-photon state is encoded in both polarization and frequency degrees of freedom.The setup of the scheme is composed of polarizing beam splitters,half wave plates,frequency shifters,and independent wavelength division multiplexers,which are feasible using current technology.We also show that with this setup we can perform complete two-photon Bell-state analysis schemes for polarization degrees of freedom.Moreover,it can also be used to perform the teleportation scheme between different degrees of freedom.This setup may allow extensive applications in current quantum communications.
基金This work is financially supported by the Beijing Natural Science Foundation!(No.2 962 0 0 4 )
文摘In the ultrasonic nondestructive evaluation of the quality of solid state welded joints, such as friction bonding and diffusion bonding, the main difficulty is the identification of micro defects which are most likely to emerge in the welding process. The ultrasonic echo on the screen of a commercial ultrasonic detector due to a micro defect is so weak that it is completely masked by noise, and impossible to be pointed out. In the present paper, wavelet analysis (WA) is utilized to process A scan ultrasonic signals from weak bonding defects in friction bonding joints and porosity in diffusion bonding joints. First, perception of WA for engineers is given, which demonstrates the physical mechanism of WA when applied to signal processing. From this point of view, WA can be understood easily and more thoroughly. Then the signals from welding joints are decomposed into a time scale plane by means of WA. We notice that noise and the signal echo attributed to the micro defect occupy different scales, which make it possible to enhance the signal to noise ratio of the signals by proper selection and threshold processing of the time scale components of the signals, followed by reconstruction of the processed components.
基金This work was supported by the National Natural Science Foundation of China(Nos.11575138,11835006,11690040,11690043,and 11705216)the Innovation Center of Radiation Application(No.KFZC2019050321)the China Scholarships Council program(No.201906280343).
文摘The propagation of single-event effects(SEEs)on a Xilinx Zynq-7000 system on chip(SoC)was inves-tigated using heavy-ion microbeam radiation.The irradia-tion results reveal several functional blocks’sensitivity locations and cross sections,for instance,the arithmetic logic unit,register,D-cache,and peripheral,while irradi-ating the on-chip memory(OCM)region.Moreover,event tree analysis was executed based on the obtained microbeam irradiation results.This study quantitatively assesses the probabilities of SEE propagation from the OCM to other blocks in the SoC.
基金supported by the Natural Science Foundation of China(61174156 61273189+5 种基金 61174035 61374179 U1435218 6140340171401168)the Army Equipment Research Foundation(012016012600B12507)
文摘Basing on discrete event simulation, a reliability simulation algorithm of the phased-mission system with multiple states is put forth. Firstly, the concepts and main characters of phasedmission system are discussed, and an active and standby redundancy (AS) tree structure method to describe the system structure of each mission phase is brought forward. Secondly, the behavior of the phased-mission system with multiple states is discussed with the theory of state chart. Thirdly, basing on the discrete event simulation concept, a simulation algorithm to estimate reliability parameters of the phased-mission system with multiple states is explored. Finally, an example is introduced and analyzed, and the analysis result verifies the algorithms. The simulation algorithm is practical and versatile, for it can model complex behavior of phased-mission system flexibly, and more reliability parameters to understand system operation can be attained.
基金supported by the“MOST”under Grant No.104-2221-E-259-024-MY2
文摘Due to the increasing demand for security, the development of intelligent surveillance systems has attracted considerable attention in recent years. This study aims to develop a system that is able to identify whether or not the people need help in a public place. Different from previous work, our work considers not only the behaviors of the target person but also the interaction between him and nearby people. In the paper, we propose an event alarm system which can detect the human behaviors and recognize the happening event through integrating the results generated from the single and group behavior analysis. Several new effective features are proposed in the study. Besides, a mechanism capable of extracting one-to-one and multiple-to-one relations is also developed. Experimental results show that the proposed approach can correctly detect human behaviors and provide the alarm messages when emergency events occur.
文摘An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology leverages numerical techniques in nonlinear observability analysis to enable online evaluation of the system observability and indication of the state estimation performance.Specifically,an empirical observability Gramian based approach is introduced to efficiently measure the observability condition of the windowed nonlinear system,and a scalar index is proposed to quantify the average system observability.The proposed approach is specialized to a challenging optimizationbased sliding window monocular visual-inertial state estimation formulation and evaluated through simulation and experiments to assess the efficacy of the methodology.The analysis result shows that the proposed approach can correctly indicate degradation of the state estimation accuracy with real-time performance.
基金supported by the National Natural Science Foundation of China(11702281)the Science Challenge Project(TZ2018007)the Technology Foundation Project of State Administration of Science,Technology and Industry for National Defence,PRC(JSZL2017212A001)
文摘For the system with the fuzzy failure state, the effects of the input random variables and the fuzzy failure state on the fuzzy probability of failure for the structural system are studied, and the moment-independence global sensitivity analysis(GSA) model is proposed to quantitatively measure these effects. According to the fuzzy random theory, the fuzzy failure state is transformed into an equivalent new random variable for the system, and the complementary function of the membership function of the fuzzy failure state is defined as the cumulative distribution function(CDF) of the new random variable. After introducing the new random variable, the equivalent performance function of the original problem is built. The difference between the unconditional fuzzy probability of failure and conditional fuzzy probability of failure is defined as the moment-independent GSA index. In order to solve the proposed GSA index efficiently, the Kriging-based algorithm is developed to estimate the defined moment-independence GSA index. Two engineering examples are employed to verify the feasibility and rationality of the presented GSA model, and the advantages of the developed Kriging method are also illustrated.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604226)Science and Technology Program Foundation of the Beijing Municipal Commission of Education of China(Grants No.CIT&TCD201904080).
文摘We present a deterministic nondestructive hyperentangled Bell state analysis protocol for photons entangled in three degrees of freedom(DOFs),including polarization,spatial-mode,and time-bin DOFs.The polarization Bell state analyzer and spatial-mode Bell state analyzer are constructed by polarization parity-check quantum nondemolition detector(P-QND)and spatial-mode parity-check quantum nondemolition detector(S-QND)using cross-Kerr nonlinearity,respectively.The time-bin Bell state analyzer is constructed by the swap gate for polarization state and time-bin state of a photon(P-T swap gate)and P-QND.The Bell states analyzer for one DOF will not destruct the Bell states of other two DOFs,so the polarization-spatial-time-bin hyperentangled Bell states can be determinately distinguished without destruction.This deterministic nondestructive state analysis method has useful applications in quantum information protocols.
基金Supported in part by the National Natural Science Foundation of China (No. 60572045)the Ministry of Education of China Ph.D. Program Foundation (No.20050698033)Cooperation Project (2005.7-2007.6) with Microsoft Research Asia.
文摘Semantic video analysis plays an important role in the field of machine intelligence and pattern recognition. In this paper, based on the Hidden Markov Model (HMM), a semantic recognition framework on compressed videos is proposed to analyze the video events according to six low-level features. After the detailed analysis of video events, the pattern of global motion and five features in foreground—the principal parts of videos, are employed as the observations of the Hidden Markov Model to classify events in videos. The applications of the proposed framework in some video event detections demonstrate the promising success of the proposed framework on semantic video analysis.
基金supported by the funded project of the China Geological Survey(grants No.12120113061700,121201009000150013 and DD20160029)
文摘Objective The Yangtze craton collisional orogeny at ca. extensional events at ca. 1 experienced Paleoproterozoic 1.95-2.0 Ga and post-orogenic 85 Ga related to amalgamation of the Columbia (Nuna) supercontinent (Zhao and Cawood, 2012). A ca. 2.15 Ga suprasubduction zone ophiolitic melange was recongized in the Archean- Paleoproterozoic Kongling Complex of the northern Yangtze craton (Han et al., 2017). However, the tectonic evolution in early Paleoproterozoic from 2.4 Ga to 2.2 Ga remains unclear. We report here the presence of a suite of Paleoproterozoic (2.2 Ga) granites in the Huangling dome, northern Yangtze craton, which may provide important insights into crustal growth processes in the craton prior to the assembly of Columbia.
文摘This paper discusses some methodological aspects for the production of susceptibility maps of slope instability developed within the CARG Project (Geological Cartography of Italy at 1:50,000 scale). It describes an example of a susceptibility map in the presence of low susceptibility, using database having zero or negligible cost, with the aim to test some methodologies that can be easily reproducible to get a first estimate of the landslide susceptibility on a wide area. Two statistical approaches have been applied: the non-parametric conditional analysis and the logistic analysis for rare events. The predictive ability obtained from the two methodologies, was evaluated by the success-prediction curves for the conditional analysis, and by the Receiver Operating Characteristic curve (ROC), for the logistic model. The landslide susceptibility maps have been classified into four classes using both the Natural Breaks algorithm and the method proposed by Chung and Fabbri (2003). The paper considers the influence of these two classification methods on the quality of final results.
文摘AIM To investigate indications and outcomes of endoscopic retrograde cholangiopancreatography(ERCP) in cirrhotics, especially adverse events. Patients with cirrhosis undergoing ERCP are believed to have increased risk. However, there is a paucity of literature describing the indications and outcomes of ERCP procedures in patients with cirrhosis, especially focusing on adverse events.METHODS We performed a systematic appraisal of major literature databases, including PubMed and EMBASE, with a manual search of literature from their inception until April 2017.RESULTS A total of 6,505 patients from 15 studies were analyzed(male ratio 59%, mean age 59 years), 11% with alcoholic and 89% with non-alcoholic cirrhosis, with 56.2% Child-Pugh class A, and 43.8% class B or C. Indications for ERCP included choledocholithiasis 60.9%, biliary strictures 26.2%, gallstone pancreatitis 21.1% and cholangitis 15.5%. Types of interventions included endoscopic sphincterotomy 52.7%, biliary stenting 16.7% and biliary dilation 4.6%. Individual adverse events included hemorrhage in 4.58%(95%CI: 2.77-6.75%, I^2 = 85.9%), post-ERCP pancreatitis(PEP) in 3.68%(95%CI: 1.83-6.00%, I^2 = 89.5%), cholangitis in 1.93%(95%CI: 0.63-3.71%, I^2 = 87.1%) and perforation in 0.00%(95%CI: 0.00-0.23%, I^2 = 37.8%). Six studies were used for comparison of ERCPrelated complications in cirrhosis vs non-cirrhosis, which showed higher overall rates of complications in cirrhosis patients with pooled OR of 1.63(95%CI: 1.27-2.09, I2 = 65%): higher rates of hemorrhage with OR of 2.05(95%CI: 1.62-2.58, I^2 = 2.1%) and PEP with OR of 1.33(95%CI: 1.04-1.70, I2=65%), but similar cholangitis rates with OR of 1.23(95%CI: 0.67-2.26, I^2 = 44.3%).CONCLUSION There is an overall higher rate of adverse events related to ERCP in patients with cirrhosis, especially hemorrhage and PEP. A thorough risk/benefit assessment should be performed prior to undertaking ERCP in patients with cirrhosis.
基金supported by the National Natural Science Foundation of China(No.U20A20310 and No.52176199)sponsored by the Program of Shanghai Academic/Technology Research Leader(No.22XD1423800)。
文摘Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.
基金supported by the National Key Research and Development Program of China[grant number 2023YFC3206001]the Three Gorges Project Comprehensive Monitoring Program for Operational Safety[grant number SK2023019]which funded by the Ministry of Water Resources of China.
文摘Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 were analyzed.For the TGR,the average annual temperature for 2022 and 2023 was 0.8℃ and 0.4℃ higher than normal,respectively,making them the two warmest years in the past decade.In 2022,the TGR experienced its warmest summer on record.The average air temperature was 2.4℃ higher than the average,and there were 24.8 days of above-average high temperature days during summer.Rainfall in the TGR varied significantly between 2022 and 2023.Annual rainfall was 18.4%below normal and drier than normal in most parts of the region.In contrast,the precipitation in 2023 was considerably higher than the long-term average,and above normal for almost the entire year.The average wind speed exhibited minimal variation between the two years.However,the number of foggy days and relative humidity increased in 2023 compared to 2022.In 2022–2023,the TGR mainly experienced meteorological disasters such as extreme high temperatures,regional heavy rain and flooding,overcast rain,and inverted spring chill.Analysis indicates that the abnormal western Pacific subtropical high and the abnormal persistence of the eastward-shifted South Asian high were the two important drivers of the durative enhancement of record-breaking high temperature in the summer of 2022.
文摘This paper interrogates the impact of policy events on the efficiency of carbon market in China.The analysis covers five piloting emission trading schemes(Beijing, Shanghai, Guangdong,Shenzhen and Hubei), particularly focusing on Guangdong pilot for its weak form efficiency and the richness of policy events. Twenty-five policy events between 2014 and 2016 are categorized into seven groups. The efficiency test indicates that only Guangdong ETS has reached weak form efficiency. After exploring the policy events occurred in Guangdong ETS, it finds that although a clear long-term climate policy has been set up over the country, China's carbon market still has a conservative risk appetite and its governing institutions still needs further development. The policy makers need to be aware of and avoid the negative impacts of policy events to the market evolvement, by introducing effective consultancy process with the stakeholders and nurturing market expectations in the long run. We also find that events like allowance auctions have considerably less impacts than previously expected and argue that auction approach should be considered a preferable option over a free allocation system in the future policy design.