A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric varia...A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.展开更多
By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constra...By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constraints in Karush-Kuhn-Tucker necessary conditions are removed. For constructing the Lagrange neural network and Lagrange multiplier method, it is no longer necessary to convert inequality constraints into equality constraints by slack variables in order to reuse those results dedicated to equality constraints, and they can be similarly proved with minor modification. Utilizing this technique, a new type of Lagrange neural network and a new type of Lagrange multiplier method are devised, which both handle inequality constraints directly. Also, their stability and convergence are analyzed rigorously.展开更多
This paper deals with maximum principle for some optimal control problem governed by some elliptic variational inequalities. Some state constraints are discussed. The basic techniques used here are based on those in [...This paper deals with maximum principle for some optimal control problem governed by some elliptic variational inequalities. Some state constraints are discussed. The basic techniques used here are based on those in [1] and a new penalty functional defined in this paper.展开更多
We study a new class of elliptic variational-hemivariational inequalities arising in the modelling of contact problems for elastic ideally locking materials. The contact is described by the Signorini unilateral contac...We study a new class of elliptic variational-hemivariational inequalities arising in the modelling of contact problems for elastic ideally locking materials. The contact is described by the Signorini unilateral contact condition and the friction is modelled by the nonmonotone multivalued subdifferential condition which depends on the slip. The problem is governed by a nonlinear elasticity operator, the subdifferential of the indicator function of a convex set which describes the locking constraints and a nonconvex locally Lipschitz friction potential. The result on existence and uniqueness of solution to the inequality is shown. The proof is based on a surjectivity result for maximal monotone and pseudomonotone operators combined with the application of the Banach contraction principle.展开更多
The optimal control problems of hyperbolic H-hemivariational inequalities with the state constraints and nonnomotone multivalued mapping term are considered.The optimal solutions are obtained.In addition,their approxi...The optimal control problems of hyperbolic H-hemivariational inequalities with the state constraints and nonnomotone multivalued mapping term are considered.The optimal solutions are obtained.In addition,their approximating problems are also studied.展开更多
The optimal control problem of parabolic variational inequalities with the state constraint and nonlinear, discontinuous nonmonotone multivalued mapping term and its approximating problem are studied, which generalize...The optimal control problem of parabolic variational inequalities with the state constraint and nonlinear, discontinuous nonmonotone multivalued mapping term and its approximating problem are studied, which generalizes some obtained results.展开更多
Although QP-free algorithms have good theoretical convergence and are effective in practice,their applications to minimax optimization have not yet been investigated.In this article,on the basis of the stationary cond...Although QP-free algorithms have good theoretical convergence and are effective in practice,their applications to minimax optimization have not yet been investigated.In this article,on the basis of the stationary conditions,without the exponential smooth function or constrained smooth transformation,we propose a QP-free algorithm for the nonlinear minimax optimization with inequality constraints.By means of a new and much tighter working set,we develop a new technique for constructing the sub-matrix in the lower right corner of the coefficient matrix.At each iteration,to obtain the search direction,two reduced systems of linear equations with the same coefficient are solved.Under mild conditions,the proposed algorithm is globally convergent.Finally,some preliminary numerical experiments are reported,and these show that the algorithm is promising.展开更多
In this paper,we introduce the concept of comparable T-completeness of a partially ordered Menger PM-space and discuss the existence of fixed points for mappings satisfying certain conditions in the framework of a com...In this paper,we introduce the concept of comparable T-completeness of a partially ordered Menger PM-space and discuss the existence of fixed points for mappings satisfying certain conditions in the framework of a comparable T-complete partially ordered Menger PM-space.We obtain some new results which generalize many known ones in the literature.Moreover,we derive some consequent results and give an example to illustrate our main result.展开更多
Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for dela...Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.展开更多
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transf...This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.展开更多
This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are availa...This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞ and H_ are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF) as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.展开更多
The suboptimal reliable guaranteed cost control (RGCC) with multi-criterion constraints is investigated for a class of uncertain continuous-time systems with sensor faults. A fauk model in sensors, which considers o...The suboptimal reliable guaranteed cost control (RGCC) with multi-criterion constraints is investigated for a class of uncertain continuous-time systems with sensor faults. A fauk model in sensors, which considers outage or partial degradation of sensors, is adopted. The influence of the disturbance on the quadratic stability of the closed-loop systems is analyzed. The reliable state-feedback controller is developed by a linear matrix inequalities (LMIs) approach, to minimize the upper bound of a quadratic cost fimction under the conditions that all the closed-loop poles be placed in a specified disk, and that the prescribed level of H∞ disturbance attenuation and the upper bound constraints of control inputs' magnitudes be guaranteed. Thus, with the above muki-criterion constraints, the resulting closed-loop system can provide satisfactory stability, transient property, a disturbance rejection level and minimized quadratic cost performance despite possible sensor faults.展开更多
An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace def...An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace defined by the active constraints,which is solved using the quasi-Newton method.The major update formula is similar to the one given by Dennis,Gay and Welsch (1981).In this paper,we state the detailed implement of the algorithm,such as the choice of active set,the solution of subproblem and the avoidance of zigzagging.We also prove the globally convergent property of the algorithm.展开更多
We consider a differential variational-hemivariational inequality with constraints,in the framework of reflexive Banach spaces.The existence of a unique mild solution of the inequality,together with its stability,was ...We consider a differential variational-hemivariational inequality with constraints,in the framework of reflexive Banach spaces.The existence of a unique mild solution of the inequality,together with its stability,was proved in[1].Here,we complete these results with existence,uniqueness and convergence results for an associated penalty-type method.To this end,we construct a sequence of perturbed differential variational-hemivariational inequalities governed by perturbed sets of constraints and penalty coefficients.We prove the unique solvability of each perturbed inequality as well as the convergence of its solution to the solution of the original inequality.Then,we consider a mathematical model which describes the equilibrium of a viscoelastic rod in unilateral contact.The weak formulation of the model is in a form of a differential variational-hemivariational inequality in which the unknowns are the displacement field and the history of the deformation.We apply our abstract penalty method in the study of this inequality and provide the corresponding mechanical interpretations.展开更多
A new algorithm of trust region type is presented to minimize a differentiable function ofmany variables with nonlinear equality and linear inequality constraints. Under the milder conditions, theglobal convergence of...A new algorithm of trust region type is presented to minimize a differentiable function ofmany variables with nonlinear equality and linear inequality constraints. Under the milder conditions, theglobal convergence of the main algorithm is proved. Moreover, since any nonlinear inequality constraint can beconverted into an equation by introducing a slack variable, the trust region method can be used in solving general nonlinear programming problems.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11102031 and 11272076)the Fundamental Research Funds for Central Universities(No.DUT13LK25)+2 种基金the Key Laboratory Fund of Liaoning Province(No.L2013015)the China Postdoctoral Science Foundation(No.2014M550155)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(No.MCMS-0114G02)
文摘A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.
文摘By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constraints in Karush-Kuhn-Tucker necessary conditions are removed. For constructing the Lagrange neural network and Lagrange multiplier method, it is no longer necessary to convert inequality constraints into equality constraints by slack variables in order to reuse those results dedicated to equality constraints, and they can be similarly proved with minor modification. Utilizing this technique, a new type of Lagrange neural network and a new type of Lagrange multiplier method are devised, which both handle inequality constraints directly. Also, their stability and convergence are analyzed rigorously.
文摘This paper deals with maximum principle for some optimal control problem governed by some elliptic variational inequalities. Some state constraints are discussed. The basic techniques used here are based on those in [1] and a new penalty functional defined in this paper.
基金supported by the National Science Center of Poland under the Maestro 3 Project No.DEC-2012/06/A/ST1/00262the project Polonium“Mathematical and Numerical Analysis for Contact Problems with Friction”2014/15 between the Jagiellonian University and Universitde Perpignan Via Domitia
文摘We study a new class of elliptic variational-hemivariational inequalities arising in the modelling of contact problems for elastic ideally locking materials. The contact is described by the Signorini unilateral contact condition and the friction is modelled by the nonmonotone multivalued subdifferential condition which depends on the slip. The problem is governed by a nonlinear elasticity operator, the subdifferential of the indicator function of a convex set which describes the locking constraints and a nonconvex locally Lipschitz friction potential. The result on existence and uniqueness of solution to the inequality is shown. The proof is based on a surjectivity result for maximal monotone and pseudomonotone operators combined with the application of the Banach contraction principle.
文摘The optimal control problems of hyperbolic H-hemivariational inequalities with the state constraints and nonnomotone multivalued mapping term are considered.The optimal solutions are obtained.In addition,their approximating problems are also studied.
文摘The optimal control problem of parabolic variational inequalities with the state constraint and nonlinear, discontinuous nonmonotone multivalued mapping term and its approximating problem are studied, which generalizes some obtained results.
基金the Natural Science Foundation of Guangxi Province(2018GXNSFAA281099)the National Natural Science Foundation of China(11771383)the Yulin Normal University Research Grant(2019YJKY16).
文摘Although QP-free algorithms have good theoretical convergence and are effective in practice,their applications to minimax optimization have not yet been investigated.In this article,on the basis of the stationary conditions,without the exponential smooth function or constrained smooth transformation,we propose a QP-free algorithm for the nonlinear minimax optimization with inequality constraints.By means of a new and much tighter working set,we develop a new technique for constructing the sub-matrix in the lower right corner of the coefficient matrix.At each iteration,to obtain the search direction,two reduced systems of linear equations with the same coefficient are solved.Under mild conditions,the proposed algorithm is globally convergent.Finally,some preliminary numerical experiments are reported,and these show that the algorithm is promising.
基金Supported by the National Natural Science Foundation of China(12161056,11701259,11771198)Natural Science Foundation of Jiangxi Province of China(20202BAB201001).
文摘In this paper,we introduce the concept of comparable T-completeness of a partially ordered Menger PM-space and discuss the existence of fixed points for mappings satisfying certain conditions in the framework of a comparable T-complete partially ordered Menger PM-space.We obtain some new results which generalize many known ones in the literature.Moreover,we derive some consequent results and give an example to illustrate our main result.
基金the National Natural Science Foundation of China (60574011)the National Natural Science Foundation of Liaoning Province (2050770).
文摘Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.
基金supported by National Natural Science Foundation of China (No. 60574014, No. 60425310)Doctor Subject Foundation of China (No. 200805330004)+2 种基金Program for New Century Excellent Talents in University (No. NCET-06-0679)Natural Science Foundation of Hunan Province of China (No. 08JJ1010)Science Foundation of Education Department of Hunan Province (No. 08C106)
文摘This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.
基金supported by the National Natural Science Foundation of China (6057408860874053)
文摘This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞ and H_ are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF) as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.
基金the National Natural Science Foundation of China (No. 60574082)the National Creative Research Groups Sci-ence Foundation of China (No. 60721062)the China Postdoc-toral Science Foundation (No. 20070411178)
文摘The suboptimal reliable guaranteed cost control (RGCC) with multi-criterion constraints is investigated for a class of uncertain continuous-time systems with sensor faults. A fauk model in sensors, which considers outage or partial degradation of sensors, is adopted. The influence of the disturbance on the quadratic stability of the closed-loop systems is analyzed. The reliable state-feedback controller is developed by a linear matrix inequalities (LMIs) approach, to minimize the upper bound of a quadratic cost fimction under the conditions that all the closed-loop poles be placed in a specified disk, and that the prescribed level of H∞ disturbance attenuation and the upper bound constraints of control inputs' magnitudes be guaranteed. Thus, with the above muki-criterion constraints, the resulting closed-loop system can provide satisfactory stability, transient property, a disturbance rejection level and minimized quadratic cost performance despite possible sensor faults.
基金Supported by The Natural Science Fundations of China and Jiangsu
文摘An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace defined by the active constraints,which is solved using the quasi-Newton method.The major update formula is similar to the one given by Dennis,Gay and Welsch (1981).In this paper,we state the detailed implement of the algorithm,such as the choice of active set,the solution of subproblem and the avoidance of zigzagging.We also prove the globally convergent property of the algorithm.
基金supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement(823731CONMECH)supported by National Natural Science Foundation of China(11671101),supported by National Natural Science Foundation of China(11961074)+2 种基金Guangxi Natural Science Foundation(2021GXNSFAA075022)Project of Guangxi Education Department(2020KY16017)Yulin normal university of scientific research fund for high-level talents(G2019ZK39,G2021ZK06)。
文摘We consider a differential variational-hemivariational inequality with constraints,in the framework of reflexive Banach spaces.The existence of a unique mild solution of the inequality,together with its stability,was proved in[1].Here,we complete these results with existence,uniqueness and convergence results for an associated penalty-type method.To this end,we construct a sequence of perturbed differential variational-hemivariational inequalities governed by perturbed sets of constraints and penalty coefficients.We prove the unique solvability of each perturbed inequality as well as the convergence of its solution to the solution of the original inequality.Then,we consider a mathematical model which describes the equilibrium of a viscoelastic rod in unilateral contact.The weak formulation of the model is in a form of a differential variational-hemivariational inequality in which the unknowns are the displacement field and the history of the deformation.We apply our abstract penalty method in the study of this inequality and provide the corresponding mechanical interpretations.
基金Project supported by the National Natural Science Foundation of China.
文摘A new algorithm of trust region type is presented to minimize a differentiable function ofmany variables with nonlinear equality and linear inequality constraints. Under the milder conditions, theglobal convergence of the main algorithm is proved. Moreover, since any nonlinear inequality constraint can beconverted into an equation by introducing a slack variable, the trust region method can be used in solving general nonlinear programming problems.