为解决氯乙烯因其精馏过程具有较强的非线性,无法实现对氯乙烯质量分数实时测量的问题,提出一种基于蝙蝠算法(bat algorithm,BA)优化回声状态网络(echo state network,ESN)的软测量模型BA-ESN.首先,通过对氯乙烯精馏过程的分析,选取模...为解决氯乙烯因其精馏过程具有较强的非线性,无法实现对氯乙烯质量分数实时测量的问题,提出一种基于蝙蝠算法(bat algorithm,BA)优化回声状态网络(echo state network,ESN)的软测量模型BA-ESN.首先,通过对氯乙烯精馏过程的分析,选取模型的辅助变量,并将归一化处理后的数据作为模型输入变量;其次,由于回声状态网络中的权值和阈值都是随机产生的,影响其泛化能力,故采用蝙蝠算法对回声状态网络的输出权值进行优化,从而提高ESN模型的收敛速度;最后,将BA-ESN模型预测氯乙烯质量分数的预测结果与ESN模型和BP模型的预测结果进行对比.仿真结果表明:BA-ESN模型的预测精度较高,泛化能力和鲁棒性都较好,能够满足氯乙烯精馏过程实时测量的要求.展开更多
氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一...氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一种基于知识与变权重回声状态网络融合(Fusion of data-knowledge and adaptive weight echo state network, DK-AWESN)的烧结过程FeO含量预测方法.首先,针对烧结过程热状态参数缺失的问题,建立烧结料层最高温度分布模型,实现基于料层温度分布特征的FeO含量等级划分;其次,针对烧结过程参数波动频繁的问题,提出基于核函数高维映射的多尺度数据配准方法,有效抑制离群点的影响,提升建模数据的质量;最后,针对烧结过程数据驱动模型缺乏机理认知致使模型预测精度不高的问题,将过程数据中提取得到的FeO含量等级知识与AW-ESN (Adaptive weight echo state network)结合,建立DK-AWESN模型,有效提升复杂工况下FeO含量的预测精度.现场工业数据试验表明,所提方法能实时准确地预测烧结过程FeO含量,为烧结过程的智能化调控提供实时有效的FeO含量反馈信息.展开更多
电力电子化的直流配电网存在低惯性问题,不利于系统稳定运行。混合储能设备可向电网提供虚拟惯性,但不同类型的储能之间存在功率协调问题,并且储能的荷电状态(state of charge, SOC)对虚拟惯性的调节也有约束作用。针对上述问题,提出了...电力电子化的直流配电网存在低惯性问题,不利于系统稳定运行。混合储能设备可向电网提供虚拟惯性,但不同类型的储能之间存在功率协调问题,并且储能的荷电状态(state of charge, SOC)对虚拟惯性的调节也有约束作用。针对上述问题,提出了一种自适应时间常数的分频控制策略,时间常数根据混合储能系统(hybridenergy storage system, HESS)的SOC而动态调整以改变功率分配。首先,通过分析储能SOC与虚拟惯性的关系,并考虑储能充放电极限问题,研究兼顾SOC、电压变化率以及电压幅值的自适应虚拟惯性控制策略,提高系统惯性。然后,建立控制系统的小信号模型,分析虚拟惯性系数对系统的影响。最后,基于Matlab/Simulink搭建直流配电网仿真模型,验证了所提控制策略能合理分配HESS功率,提高超级电容器利用率,改善直流电压与功率稳定性。展开更多
文摘为解决氯乙烯因其精馏过程具有较强的非线性,无法实现对氯乙烯质量分数实时测量的问题,提出一种基于蝙蝠算法(bat algorithm,BA)优化回声状态网络(echo state network,ESN)的软测量模型BA-ESN.首先,通过对氯乙烯精馏过程的分析,选取模型的辅助变量,并将归一化处理后的数据作为模型输入变量;其次,由于回声状态网络中的权值和阈值都是随机产生的,影响其泛化能力,故采用蝙蝠算法对回声状态网络的输出权值进行优化,从而提高ESN模型的收敛速度;最后,将BA-ESN模型预测氯乙烯质量分数的预测结果与ESN模型和BP模型的预测结果进行对比.仿真结果表明:BA-ESN模型的预测精度较高,泛化能力和鲁棒性都较好,能够满足氯乙烯精馏过程实时测量的要求.
文摘氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标,烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义.然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战,为此,提出一种基于知识与变权重回声状态网络融合(Fusion of data-knowledge and adaptive weight echo state network, DK-AWESN)的烧结过程FeO含量预测方法.首先,针对烧结过程热状态参数缺失的问题,建立烧结料层最高温度分布模型,实现基于料层温度分布特征的FeO含量等级划分;其次,针对烧结过程参数波动频繁的问题,提出基于核函数高维映射的多尺度数据配准方法,有效抑制离群点的影响,提升建模数据的质量;最后,针对烧结过程数据驱动模型缺乏机理认知致使模型预测精度不高的问题,将过程数据中提取得到的FeO含量等级知识与AW-ESN (Adaptive weight echo state network)结合,建立DK-AWESN模型,有效提升复杂工况下FeO含量的预测精度.现场工业数据试验表明,所提方法能实时准确地预测烧结过程FeO含量,为烧结过程的智能化调控提供实时有效的FeO含量反馈信息.